Description

It's raining outside. Farmer Johnson's bull Ben wants some rain to water his flowers. Ben nails two wooden boards on the wall of his barn. Shown in the pictures below, the two boards on the wall just look like two segments on the plane, as they have the same width. 

Your mission is to calculate how much rain these two boards can collect. 

Input

The first line contains the number of test cases. 
Each test case consists of 8 integers not exceeding 10,000 by absolute value, x1y1x2y2x3y3x4y4. (x1y1), (x2y2) are the endpoints of one board, and (x3y3), (x4y4) are the endpoints of the other one. 

Output

For each test case output a single line containing a real number with precision up to two decimal places - the amount of rain collected. 
 
题目大意:给两条线段,问这两条线段可以接多少面积的雨水。
思路:没有相交的线段不能接水。因为雨是垂直下落的,有时可能会有一条线段遮住了接水的地方导致无法接水。
PS:输出就不加EPS可能会WA,比如某个计算结果是0.004999999999……
 
代码(32MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line; bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
} Point intersection(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} /*******************************************************************************************/ Seg a, b;
int n; double solve() {
if(!isIntersected(a, b)) return ;
Seg tmp(Point(, ), Point(, ));
if(isParallel(a, tmp) || isParallel(b, tmp) || isParallel(a, b)) return ;
if(a.st.y > a.ed.y) swap(a.st, a.ed);
if(b.st.y > b.ed.y) swap(b.st, b.ed);
Point O = intersection(a, b);
if(b.ed < a.ed) swap(a, b);
if(sgn(a.ed.x - O.x) == sgn(b.ed.x - O.x) && (sgn(b.ed.x - O.x) * sgn(cross(b.ed, O, a.ed)) >= ) &&
sgn(fabs(b.ed.x - O.x) - fabs(a.ed.x - O.x)) >= ) return ;
Point A = a.ed;
tmp = Seg(A, Point(A.x + , A.y));
Point B = intersection(tmp, b);
return area(A, B, O);
} int main() {
scanf("%d", &n);
for(int i = ; i < n; ++i) {
a.read(), b.read();
printf("%.2f\n", solve() + EPS);
}
}

POJ 2826 An Easy Problem?!(线段交点+简单计算)的更多相关文章

  1. POJ 2826 An Easy Problem?![线段]

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12970   Accepted: 199 ...

  2. POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...

  3. POJ 2826 An Easy Problem?!

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7837   Accepted: 1145 ...

  4. POJ 2826 An Easy Problem?! 好的标题

    受该两块木板以形成槽的效果.Q槽可容纳雨水多,注意雨爆跌,思想是非常easy,分类讨论是有点差. 1.假定两条线段不相交或平行,然后再装0: 2.有一个平行x轴.连衣裙0. 3.若上面覆盖以下的,装0 ...

  5. 简单几何(线段相交) POJ 2826 An Easy Problem?!

    题目传送门 题意:两条线段看成两块木板,雨水从上方往下垂直落下,问能接受到的水的体积 分析:恶心的分类讨论题,考虑各种情况,尤其是入口被堵住的情况,我的方法是先判断最高的两个点是否在交点的同一侧,然后 ...

  6. POJ 2826 An Easy Problem!(简单数论)

    Description Have you heard the fact "The base of every normal number system is 10" ? Of co ...

  7. POJ 2826 An Easy Problem?! --计算几何,叉积

    题意: 在墙上钉两块木板,问能装多少水.即两条线段所夹的中间开口向上的面积(到短板的水平线截止) 解法: 如图: 先看是否相交,不相交肯定不行,然后就要求出P与A,B / C,D中谁形成的向量是指向上 ...

  8. POJ 1152 An Easy Problem! (取模运算性质)

    题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R.保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现当中将N进制话成10进制时,数据会溢 ...

  9. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

随机推荐

  1. 断言assert()与调试帮助

    列表内容assert()是一种预处理宏(preprocessor marco),使用一个表达式来作为条件,只在DEBUG模式下才有用. assert(expr); 对expr求值,如果expr为假,则 ...

  2. Jquery中菜单的展开和折叠

    jquery内容 <script> $(function () { $("dl dt").click(function () { $(this).siblings(). ...

  3. 在tornado中使用异步mysql操作

    在使用tornado框架进行开发的过程中,发现tornado的mysql数据库操作并不是一步的,造成了所有用户行为的堵塞.tornado本身是一个异步的框架,要求所有的操作都应该是异步的,但是数据库这 ...

  4. PHP实现openSug.js参数调试

    这是一款利PHP对百度搜索下拉框提示免费代码实现参数配置调试的程序源代码. 由想要对网站进行搜索下拉调试的站长朋友们进行方便.快速的效果演示,具体参考下面的PHP代码. 如何使用? 请新建一份PHP文 ...

  5. Thinkphp5 对接百度云对象存储 BOS (上传、删除)

    首先下载SDK包可以在 官网下载,或者在项目根目录使用composer . composer require baidubce/bce-sdk-php 压缩包里面有五个文件,实际运用到只有两个,然后放 ...

  6. Python对文件目录的操作

    python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd()返回指定目录下的所有文件和目录 ...

  7. 十分钟搭建和使用ELK日志分析系统

    前言 为满足研发可视化查看测试环境日志的目的,准备采用EK+filebeat实现日志可视化(ElasticSearch+Kibana+Filebeat).题目为“十分钟搭建和使用ELK日志分析系统”听 ...

  8. 成都Uber优步司机奖励政策(3月31日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  9. PS 旋转任意角度的照片

    1.选择标尺工具 2.在图片上画一个线,然后工具栏--图像--图像旋转

  10. spring + mybatis 注解 @Transactional失效

    1.问题 在使用@Transactional注解管理事务的时候会出现很多错误,比如: *** was not registered for synchronization because synchr ...