BZOJ1770:[USACO]lights 燈(高斯消元,DFS)
Description
貝希和她的閨密們在她們的牛棚中玩遊戲。但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了。貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望。她希望您能夠幫幫她,把所有的燈都給重新開起來!她才能繼續快樂地跟她的閨密們繼續玩遊戲! 牛棚中一共有N(1 <= N <= 35)盞燈,編號為1到N。這些燈被置於一個非常複雜的網絡之中。有M(1 <= M <= 595)條很神奇的無向邊,每條邊連接兩盞燈。 每盞燈上面都帶有一個開關。當按下某一盞燈的開關的時候,這盞燈本身,還有所有有邊連向這盞燈的燈的狀態都會被改變。狀態改變指的是:當一盞燈是開著的時候,這盞燈被關掉;當一盞燈是關著的時候,這盞燈被打開。 問最少要按下多少個開關,才能把所有的燈都給重新打開。 數據保證至少有一種按開關的方案,使得所有的燈都被重新打開。
Input
*第一行:兩個空格隔開的整數:N和M。
*第二到第M+1行:每一行有兩個由空格隔開的整數,表示兩盞燈被一條無向邊連接在一起。 沒有一條邊會出現兩次。
Output
第一行:一個單獨的整數,表示要把所有的燈都打開時,最少需要按下的開關的數目。
Sample Input
1 2
1 3
4 2
3 4
2 5
5 3
輸入細節:
一共有五盞燈。燈1、燈4和燈5都連接著燈2和燈3。
Sample Output
輸出細節:
按下在燈1、燈4和燈5上面的開關。
Solution
还有这题目为什么是繁体的
搞死小圆高斯消元好强啊QAQ这个题的做法也好神奇啊
很容易可以发现,开关的顺序不会影响最终结果
那么到底应该怎么搞呢?举个栗子
有3盏灯,其中1和2连接,1和3不连接,那么我们可以列出一个方程
(1*ans[1])^(1*ans[2])^(0*ans[3])=1
ans[]表示这个灯有没有按。灯1本身或者和灯1相连的灯系数为1,否则为0
为什么这么列呢?很容易发现,如果为1的项的异或和为1,那么最后结果肯定是1
感性理解一下,应该挺好懂的
以此类推我们可以列出n个这样的方程,然后我们就可以用高斯消元来把这个矩阵消了
消异或矩阵和消普通矩阵是一样的,只不过是把加减的操作换成异或
消了之后不要记着求答案,因为答案里面可能有自由变元。
怎么办呢?可以用爆搜替代普通高斯消元的答案回带,
若当前行的答案固定就算出来,否则的话就枚举0/1记入答案。继续搜下一层。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (50)
using namespace std; int n,m,minn=0x7fffffff,u,v;
int f[N][N],ans[N],head[N],num_edge; void Gauss()
{
for (int i=; i<=n; ++i)
{
int num=i;
for (int j=i+; j<=n; ++j)
if (f[j][i]>f[i][i])
num=j;
if (num!=i)
for (int j=; j<=n+; ++j)
swap(f[i][j],f[num][j]);
for (int j=i+; j<=n; ++j)
if (f[j][i])
for (int k=i; k<=n+; ++k)
f[j][k]^=f[i][k];
}
} void Dfs(int x,int now)
{
if (now>=minn) return;
if (x==) {minn=now; return;} if (f[x][x])
{
int t=f[x][n+];
for (int i=x+; i<=n; ++i) t^=f[x][i]*ans[i];
ans[x]=t;
Dfs(x-,now+(t==));
}
else
{
ans[x]=; Dfs(x-,now);
ans[x]=; Dfs(x-,now+);
}
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
{
scanf("%d%d",&u,&v);
f[u][v]=f[v][u]=;
}
for (int i=; i<=n; ++i) f[i][n+]=f[i][i]=;
Gauss();
Dfs(n,);
printf("%d",minn);
}
BZOJ1770:[USACO]lights 燈(高斯消元,DFS)的更多相关文章
- BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )
高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...
- [luoguP2962] [USACO09NOV]灯Lights(高斯消元 + dfs)
传送门 先进行高斯消元 因为要求最少的开关次数,那么: 对于关键元,我们可以通过带入消元求出, 对于自由元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1 #include <cmath ...
- BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]
题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...
- bzoj 1770: [Usaco2009 Nov]lights 燈【高斯消元+dfs】
参考:https://blog.csdn.net/qq_34564984/article/details/53843777 可能背了假的板子-- 对于每个灯建立方程:与它相邻的灯的开关次数的异或和为1 ...
- poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8481 Accepted: 5479 Description In an ...
- Flip Game (高斯消元 || dfs)
Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 square ...
- Codeforces 1163E 高斯消元 + dfs
题意:给你一个集合,让你构造一个长度尽量长的排列,使得排列中任意相邻两个位置的数XOR后是集合中的数. 思路:我们考虑枚举i, 然后判断集合中所有小于1 << i的数是否可以构成一组异或空 ...
- POJ 1222 EXTENDED LIGHTS OUT (高斯消元)
题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...
- POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组
http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...
随机推荐
- bzoj 4709: [Jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- C#根据用户输入字符串,输出大写字母有几个,小写字母有几个
static void Main(string[] args) { // 根据用户输入字符串,输出大写字母有几个,小写字母有几个. Console.WriteLine("请输入一行英文代码& ...
- JQuery对数组的一些操作总结
JQuery对数组的处理非常便捷并且功能强大齐全,一步到位的封装了很多原生js数组不能企及的功能.下面来看看JQuery数组的强大之处在哪. $.each(array, [callback]) 遍历 ...
- openlayers 各种图层,持续更新
/*高德地图*/ var vectorLayerLine = new ol.layer.Tile({ source: new ol.source.XYZ({ urls: [ "http:// ...
- smarty assign 赋值
assign赋值 void assign (mixed var) void assign (string varname, mixed var) This is used to assign valu ...
- request对象域和转发
1.request是一个域对象,具备以下方法 setAttribute(string name,Object O) getAttribute(String name) removeAttribute( ...
- No.4一步步学习vuejs之表单输入绑定
基础用法 你可以用 v-model 指令在表单控件元素上创建双向数据绑定.它会根据控件类型自动选取正确的方法来更新元素.尽管有些神奇,但 v-model 本质上不过是语法糖,它负责监听用户的输入事件以 ...
- 初步理解require.js模块化编程
初步理解require.js模块化编程 一.Javascript模块化编程 目前,通行的Javascript模块规范共有两种:CommonJS和AMD. 1.commonjs 2009年,美国程序员R ...
- Python-常用模块1
今天我们来看一看python中的常用的模块,内容有点多,我会分两天来更新这些知识 一.什么是模块 模块就是我们把装有特定功能的代码就行归类的结果,从代码编写的单位来看我们的程序,从小到大的顺序:一条代 ...
- Java Struts2 (四)
一.contextMap中的数据操作 root根:List 元素1 元素2 元素3 元素4 元素5 contextMap:Map key value application Map key value ...