1.基本概念

  1)定义:

  决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系,树中每个节点代表的某个可能的属性值。

  2)表示方法:

  通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对某个属性的测试,并在该结点的每一个后继分支对应于该属性的一个可能值。

  

  3)决策树适用问题:

  a.实例是由‘属性-值’对表示的

  b.目标函数具有离散的输出值

  c.可能需要十析取的描述

  d.训练数据可以包含错误

  e.训练数据可以包含缺少属性值的实例

2.ID3:自顶向下的贪婪搜索遍历可能的决策树空间。

  1)用熵度量样例的均一性:

  

  S为样例集,c表示属性的个数,pi表示第i个属性值在样例集合中的比例,采用以2为底的对数是因为熵是以二进制位的个数来度量编码长度。

  2)用信息增量度量期望的熵降低:

  

  A表示某个属性值,values(A)表示A属性的所有可能Sv 是S中属性为A的值为v的子集

  3)ID3特征:

  a.假设空间包含所有的决策树,是关于有限属性的一个完整空间

  b.遍历整个空间时,只维护当前单一的假设,失去了考虑所有假设带来的一致性测试

  c.在搜索过程中不回溯,因此只收敛到局部最优,而不是全局最优

  d.每一步搜索都使用所有训练样例,以统计为基础决定精化当前假设

  e.ID3的归纳偏置:较短的树比较长的树优先,即:信息增益高的属性更靠近根结点的树优先(奥坎姆剃刀:优先选择拟合数据的最简单假设)

3.C4.5

  1)对ID3的改进:

  a.用信息增益率来作属性的选择

  b.进行后规则剪枝

  c.可以对离散数据进行处理

  d.可以对缺失属性数据进行处理

  2)分裂信息度量:用来衡量属性分裂数据的广度和均匀

  

  3)信息增益率:作属性选择

  

4.源码:

  1)ID3:

  https://github.com/Ares08/ID3-Machine-Learning-Algorithm

  2)C4.5:

  https://github.com/Ares08/C4.5

  

决策树:ID3与C4.5算法的更多相关文章

  1. 机器学习总结(八)决策树ID3,C4.5算法,CART算法

    本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...

  2. 《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法

    主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两 ...

  3. 决策树(ID3、C4.5、CART)

    ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益. 假设我们有一个样本集,里面每个样本都有自己的分类结果. 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度. 即熵 ...

  4. 机器学习之决策树(ID3 、C4.5算法)

    声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决 ...

  5. 小啃机器学习(1)-----ID3和C4.5决策树

    第一部分:简介 ID3和C4.5算法都是被Quinlan提出的,用于分类模型,也被叫做决策树.我们给一组数据,每一行数据都含有相同的结构,包含了一系列的attribute/value对. 其中一个属性 ...

  6. 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)

    1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...

  7. 决策树之ID3、C4.5、C5.0等五大算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 ...

  8. 决策树之C4.5算法

    决策树之C4.5算法 一.C4.5算法概述 C4.5算法是最常用的决策树算法,因为它继承了ID3算法的所有优点并对ID3算法进行了改进和补充. 改进有如下几个要点: 用信息增益率来选择属性,克服了ID ...

  9. 【Machine Learning in Action --3】决策树ID3算法

    1.简单概念描述 决策树的类型有很多,有CART.ID3和C4.5等,其中CART是基于基尼不纯度(Gini)的,这里不做详解,而ID3和C4.5都是基于信息熵的,它们两个得到的结果都是一样的,本次定 ...

随机推荐

  1. Java程序运行时的几个区域

    Java运行时涉及到的区域 几个基本概念: 1.Java对象     2.Java方法    3.一个编译好的类,以class文件的形式出现 4.Java的本地方法   5.线程私有和线程共有   一 ...

  2. 【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]

    树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1 ...

  3. 【NOIP】2013提高组 花匠(摆花)

    [算法]DP||贪心 [题解] (1)动态规划: 令f[i][0..1]为两种条件下前i株花的最大保留数量,状态转移方程: f[i][0]=max(f[j][1]+1) (j=i-1...1)(h[i ...

  4. 【BZOJ】3790 神奇项链

    [算法](manacher+贪心)||(manacher+DP+树状数组/线段树) [题解] manacher求回文串,后得到线段,做一点计算映射回原串线段. 然后问题转化为可重叠区间线段覆盖问题,可 ...

  5. centos7 多版本python并存问题

    新的阿里云服务器,本身装有python2.7,但是项目需要python3,于是只能再装一个python3.6 参考文章:https://www.cnblogs.com/johnny1024/p/844 ...

  6. FileReader 与canvas结合使用显示图片

    话不多少,直接上代码 function fileChange() { var file = this.files[0]; var imageType = /^image\//; //是否是图片 if ...

  7. 【转】linux下杀死进程

    经过搜集和整理相关的Linux操作系统杀死进程的材料,在这里给大家推荐本篇文章,希望大家看后会有不少收获. 1. kill 作用:根据进程号杀死进程 用法: kill [信号代码] 进程ID 举例: ...

  8. ubuntu gnome桌面秀

    之前装的是ubuntu14.10gnome版的 然后一路升级成15.04,到今天的15.10 最后发现现在的gnome桌面已经非常适合我的工作了 先放一张图,这是我的桌面 原来使用ubuntu15.0 ...

  9. deepin 快捷键

    从此脱离鼠标

  10. python基础===如何优雅的写代码(转自网络)

    本文是Raymond Hettinger在2013年美国PyCon演讲的笔记(视频, 幻灯片). 示例代码和引用的语录都来自Raymond的演讲.这是我按我的理解整理出来的,希望你们理解起来跟我一样顺 ...