Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]

Have you met this question in a real interview?
 
Analysis:
Since there are duplicates, for each value, we get the number of elements that are this value. We sort the array, at each step in the recursion, we try to use 0 to elementNumOfCurValue number of this value. For next step, we directly skip to the next value.
 
Solution:
 public class Solution {
public List<List<Integer>> combinationSum2(int[] num, int target) {
int[] candidates = num;
List<List<Integer>> resSet = new ArrayList<List<Integer>>();
List<Integer> curRes = new ArrayList<Integer>();
if (candidates.length==0) return resSet;
Arrays.sort(candidates);
int cur=0,end=candidates.length-1;
for (int i=0;i<candidates.length;i++)
if (candidates[i]>target){
end = i-1;
break;
} sumRecur(candidates,cur,end,target,resSet,curRes); return resSet; } public void sumRecur(int[] candidates, int cur, int end, int valLeft, List<List<Integer>> resSet, List<Integer> curRes){
if (valLeft==0){
List<Integer> temp = new ArrayList<Integer>();
temp.addAll(curRes);
resSet.add(temp);
return;
} if (cur>end) return; int newLeft = valLeft;
int curLen = curRes.size();
int nextIndex = cur;
while (nextIndex<=end && candidates[nextIndex]==candidates[cur]) nextIndex++; for (int i=cur;i<nextIndex;i++)
if (newLeft>=candidates[i]){
curRes.add(candidates[i]);
newLeft -= candidates[i];
sumRecur(candidates,nextIndex,end,newLeft,resSet,curRes);
} else
break; while (curRes.size()!=curLen) curRes.remove(curRes.size()-1); sumRecur(candidates,nextIndex,end,valLeft,resSet,curRes);
}
}

Leetcode-Combinations Sum II的更多相关文章

  1. LeetCode: Combination Sum II 解题报告

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

  2. [leetcode]Path Sum II

    Path Sum II Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals ...

  3. LeetCode: Path Sum II 解题报告

    Path Sum II Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals ...

  4. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  5. [LeetCode] Two Sum II - Input array is sorted 两数之和之二 - 输入数组有序

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  6. [LeetCode] Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  7. Leetcode Combination Sum II

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  8. LeetCode Two Sum II - Input array is sorted

    原题链接在这里:https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/ 题目: Given an array of intege ...

  9. [LeetCode] Combination Sum II (递归)

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  10. [leetcode]Path Sum II @ Python

    原题地址:https://oj.leetcode.com/problems/path-sum-ii/ 题意: Given a binary tree and a sum, find all root- ...

随机推荐

  1. Ubuntu 安装配置 JDK+Tomcat+Nginx

    安装配置JDK 下载安装 # 下载: wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=acc ...

  2. java基础讲解03-----java的结构

    前面我们说了java是面向对象的语言,java程序的基本组成单元是类,类中又属性,方法两个部分,每个应用程序都会有一个mian函数,含有main()方法的类,我们称为主类 package  Test; ...

  3. python selenium ---键盘事件

    转自:http://www.cnblogs.com/fnng/p/3258946.html 本节重点: l 键盘按键用法 l 键盘组合键用法 l send_keys() 输入中文运行报错问题 键盘按键 ...

  4. Android:实现手势滑动的事件处理方法

            首先得Activity必须实现OnGestureListener接口,该接口提供了关于手势操作的一些方法, onDown方法:onDown是,一旦触摸屏按下,就马上产生onDown事件 ...

  5. 几种TCP连接中出现RST的情况(转载)

    TCP RST 网络 linux 目录[-] 1 端口未打开 2 请求超时 3 提前关闭 4 在一个已关闭的socket上收到数据 总结 参考文献: 应该没有人会质疑,现在是一个网络时代了.应该不少程 ...

  6. 实验c语言不同类型的指针互用(不推荐只是学习用)

    #include <stdio.h> int main(int argc, char *argv[]) { printf("Hello, world\n"); ]; i ...

  7. Java并发编程(四):线程安全性

    一.定义 当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的. 二.线程安 ...

  8. 为每个页面加上Session判断

    首先新建一个类,继承自System.Web.UI.Page,然后重写OnInit,如下: using System; using System.Data; using System.Configura ...

  9. 关于Animator获取当前剪辑长度

    通常下意识的肯定用这个接口 GetCurrentAnimatorStateInfo().length 但是存在一个过渡动画的问题,具体看这篇:过渡动画的测试 所以当播新的状态时直接取动画时间,取到的就 ...

  10. [svc][op]pip安装ansible && yum安装python34

    相对yum安装,pip安装的好处是jinjia版本到了2.8 pip安装ansible Successfully installed MarkupSafe-1.0 PyYAML-3.12 ansibl ...