1.std::move

1.1std::move是如何定义的

  template<typename _Tp>
constexpr typename std::remove_reference<_Tp>::type&&
move(_Tp&& __t) noexcept
{ return static_cast<typename std::remove_reference<_Tp>::type&&>(__t); }

1.2 std::move是如何工作的

1.2.1传入一个右值

 a.如果传入是一个右值string,比如“hello”,推断出_Tp类型为string

 b.std::remove_reference<_Tp>::type的类型依旧为string

  c.move函数的返回类型为string&&

  d.move函数的参数类型为string&&

   e.static_cast显式转换类型为string&&

1.2.2传入一个左值

  a.推断出_Tp的类型为string&

  b.std::remove_reference<_Tp>::type的类型为string

  c.move函数的返回类型为string&&

  d.move函数的参数类型为string& &&,会折叠为string&

e.static_cast显式转换类型为string&&

1.3引用折叠

a.X& &,X& &&和X&& &都折叠为X&

b.X&& && 折叠为X&&

2.std::forward

2.1std::forward是如何定义的

  /**
* @brief Forward an lvalue.
* @return The parameter cast to the specified type.
*
* This function is used to implement "perfect forwarding".
*/
template<typename _Tp>
constexpr _Tp&&
forward(typename std::remove_reference<_Tp>::type& __t) noexcept
{ return static_cast<_Tp&&>(__t); } /**
* @brief Forward an rvalue.
* @return The parameter cast to the specified type.
*
* This function is used to implement "perfect forwarding".
*/
template<typename _Tp>
constexpr _Tp&&
forward(typename std::remove_reference<_Tp>::type&& __t) noexcept
{
static_assert(!std::is_lvalue_reference<_Tp>::value, "template argument"
" substituting _Tp is an lvalue reference type");
return static_cast<_Tp&&>(__t);
}

2.2std::forward是如何工作的

2.2.1_Tp类型是左值引用

a.如果中转函数的实参是左值string,_Tp的类型为string&,std::remove_reference<_Tp>::type为string

b.forward函数参数__t的类型折叠后为string&

c.string& && (_Tp&&)折叠后依旧为左值引用string&

d.forword函数的返回为string&

2.2.2_Tp类型是右值

a.如果中转实参是右值sting,_Tp的类型为sting,std::remove_reference<_Tp>::type为string

b.forward函数参数__t的类型为string&&

c.forword函数的返回为string&&

2.3  模版重载

此处存在错误!因为存在模版重载机制,所以左值使用第一个版本,而右值选择第二个版本。

更正:完美转发时 ,只有左值,因为右值引用一旦有名字,就是左值!!!必定选择第一个版本,在非完美转发场景下存在如下规则


    A a;
std::forward<A&>(std::move(a)); //版本 2 error
A&& a = std::forward<A&&>(A()); //版本 2 ok
A&& b = std::forward<A>(A()); // 版本 2 ok


上述代码抛出异常。

3.STL转发的例子

 // shared_ptr.h
// This constructor is non-standard, it is used by allocate_shared.
  template<typename _Alloc, typename... _Args>
shared_ptr(_Sp_make_shared_tag __tag, const _Alloc& __a,
_Args&&... __args)
: __shared_ptr<_Tp>(__tag, __a, std::forward<_Args>(__args)...)
{ }   template<typename _Tp, typename _Alloc, typename... _Args>
inline shared_ptr<_Tp>
allocate_shared(const _Alloc& __a, _Args&&... __args)
{
return shared_ptr<_Tp>(_Sp_make_shared_tag(), __a,
std::forward<_Args>(__args)...);
}   template<typename _Tp, typename... _Args>
inline shared_ptr<_Tp>
make_shared(_Args&&... __args)
{
typedef typename std::remove_const<_Tp>::type _Tp_nc;
return std::allocate_shared<_Tp>(std::allocator<_Tp_nc>(),
std::forward<_Args>(__args)...);
}
//shared_ptr_base.h
#ifdef __GXX_RTTI
protected:
// This constructor is non-standard, it is used by allocate_shared.
template<typename _Alloc, typename... _Args>
__shared_ptr(_Sp_make_shared_tag __tag, const _Alloc& __a,
_Args&&... __args)
: _M_ptr(), _M_refcount(__tag, (_Tp*), __a,
std::forward<_Args>(__args)...)
{
// _M_ptr needs to point to the newly constructed object.
// This relies on _Sp_counted_ptr_inplace::_M_get_deleter.
void* __p = _M_refcount._M_get_deleter(typeid(__tag));
_M_ptr = static_cast<_Tp*>(__p);
__enable_shared_from_this_helper(_M_refcount, _M_ptr, _M_ptr);
}
#else
template<typename _Alloc>
struct _Deleter
{
void operator()(_Tp* __ptr)
{
typedef allocator_traits<_Alloc> _Alloc_traits;
_Alloc_traits::destroy(_M_alloc, __ptr);
_Alloc_traits::deallocate(_M_alloc, __ptr, );
}
_Alloc _M_alloc;
}; template<typename _Alloc, typename... _Args>
__shared_ptr(_Sp_make_shared_tag __tag, const _Alloc& __a,
_Args&&... __args)
: _M_ptr(), _M_refcount()
{
typedef typename _Alloc::template rebind<_Tp>::other _Alloc2;
_Deleter<_Alloc2> __del = { _Alloc2(__a) };
typedef allocator_traits<_Alloc2> __traits;
_M_ptr = __traits::allocate(__del._M_alloc, );
__try
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2070. allocate_shared should use allocator_traits<A>::construct
__traits::construct(__del._M_alloc, _M_ptr,
std::forward<_Args>(__args)...);
}
__catch(...)
{
__traits::deallocate(__del._M_alloc, _M_ptr, );
__throw_exception_again;
}
__shared_count<_Lp> __count(_M_ptr, __del, __del._M_alloc);
_M_refcount._M_swap(__count);
__enable_shared_from_this_helper(_M_refcount, _M_ptr, _M_ptr);
}
#endif
//new_allocator.h
#if __cplusplus >= 201103L
template<typename _Up, typename... _Args>
void
construct(_Up* __p, _Args&&... __args)
{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }

上面STL例子,还应用了可变参数模版和转发参数包语法,需要进一步了解。本人水平有限,如果错误请指正谢谢。

C++0x,std::move和std::forward解析的更多相关文章

  1. C++11 std::move和std::forward

    下文先从C++11引入的几个规则,如引用折叠.右值引用的特殊类型推断规则.static_cast的扩展功能说起,然后通过例子解析std::move和std::forward的推导解析过程,说明std: ...

  2. item 23: 理解std::move和std::forward

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 根据std::move和std::forward不 ...

  3. C++11中std::move、std::forward、左右值引用、移动构造函数的测试

    关于C++11新特性之std::move.std::forward.左右值引用网上资料已经很多了,我主要针对测试性能做一个测试,梳理一下这些逻辑,首先,左值比较熟悉,右值就是临时变量,意味着使用一次就 ...

  4. std::move()和std::forward()

    std::move(t)负责将t的类型转换为右值引用,这种功能很有用,可以用在swap中,也可以用来解决完美转发. std::move()的源码如下 template<class _Ty> ...

  5. 关于C++11中的std::move和std::forward

    std::move是一个用于提示优化的函数,过去的c++98中,由于无法将作为右值的临时变量从左值当中区别出来,所以程序运行时有大量临时变量白白的创建后又立刻销毁,其中又尤其是返回字符串std::st ...

  6. [C/C++]关于C++11中的std::move和std::forward

    http://www.cnblogs.com/cbscan/archive/2012/01/10/2318482.html http://blog.csdn.net/fcryuuhou/article ...

  7. 透彻理解C++11新特性:右值引用、std::move、std::forward

    目录 浅拷贝.深拷贝 左值.右值 右值引用类型 强转右值 std::move 重新审视右值引用 右值引用类型和右值的关系 函数参数传递 函数返还值传递 万能引用 引用折叠 完美转发 std::forw ...

  8. Item 25: 对右值引用使用std::move,对universal引用则使用std::forward

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 右值引用只能绑定那些有资格被move的对象上去.如 ...

  9. 一文带你详细介绍c++中的std::move函数

    前言 在探讨c++11中的Move函数前,先介绍两个概念(左值和右值) 左值和右值 首先区分左值和右值 左值是表达式结束后依然存在的持久对象(代表一个在内存中占有确定位置的对象) 右值是表达式结束时不 ...

随机推荐

  1. 二十六、关于 IntelliJ IDEA 中 Schedule for Addition 的问题

    在我们使用 IntelliJ IDEA 的时候,经常会遇到这种情况,即: 从 SVN 检出项目之后,并用 IDEA 首次打开项目,IDEA 会弹出如下选择框: 如上图所示,让我们选择是否将XXX.im ...

  2. keil之编辑环境配置

    1.edit-->configuration 2. 3.开始是:ANSI编码,但一去掉:display modules,中文的注视就乱码了:请教Justchen,把编码改为GB2312,一切恢复 ...

  3. django, CentOS7+nginx(apache)+mod_wsgi+Python+Django

    Django是一个开放源代码的Web应用框架,由Python写成.采用了MVC的框架模式,即模型M,视图V和控制器C.它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS ...

  4. Layered Architecture 分层架构

    分层的价值在于每一层都只代表程序中的某一特定方面.这种限制使每个方面的设计都更具有内聚性,更容易解释. 大多数成功的架构使用的都是包括下面这四个概念层的某个版本

  5. shell基础知识---与监听服务器长连接端口状态

    从未写过脚本我的最近接了俩脚本的需求,就在这分享一下我的我学到基础知识主要就四部分内容 一.变量 变量的定义 string='字符串' string="字符串" num=808st ...

  6. js之广告

    涉及到offset等有关获取各种尺寸问题下 <!doctype html> <html lang="en"> <head> <meta c ...

  7. Filter(过滤器)与Interceptor(拦截器)的区别

    Filter能够对请求和响应资源进行拦截: Interceptor只针对请求进行拦截 在 Struts2中: (1)拦截器是基于java反射机制的,而过滤器是基于函数回调的. (2)过滤器依赖与ser ...

  8. 【rabbitmq消息队列配置】

    #erlang语言支持包 #rabbitmq-server安装支持 #添加用户 #删除用户 #用户角色 #启动 #登录 #管理界面 #guest登录不了: Rabbitmq.conf文件添加 #开启管 ...

  9. Vue性能优化之组件按需加载(以及一些常见的性能优化方法)

    关于Vue中的按需加载我就简单介绍一下:大概就是我们所有的东西都会在app.js里面,但是我们并不需要把所有的组件都一次性加载进来,我们可以在需要它的时候再将它加载进来,话不多说,开车! 1.webp ...

  10. 基于C语言的面向对象编程

    嵌入式软件开发中,虽然很多的开发工具已经支持C++的开发,但是因为有时考虑运行效率和编程习惯,还是有很多人喜欢用C来开发嵌入式软件.Miro Samek说:"我在开发现场发现,很多嵌入式软件 ...