1. 服务器启动时期的Leader选举

  若进行Leader选举,则至少需要两台机器,这里选取3台机器组成的服务器集群为例。在集群初始化阶段,当有一台服务器Server1启动时,其单独无法进行和完成Leader选举,当第二台服务器Server2启动时,此时两台机器可以相互通信,每台机器都试图找到Leader,于是进入Leader选举过程。选举过程如下

  (1) 每个Server发出一个投票。由于是初始情况,Server1和Server2都会将自己作为Leader服务器来进行投票,每次投票会包含所推举的服务器的myid和ZXID,使用(myid, ZXID)来表示,此时Server1的投票为(1, 0),Server2的投票为(2, 0),然后各自将这个投票发给集群中其他机器。

  (2) 接受来自各个服务器的投票。集群的每个服务器收到投票后,首先判断该投票的有效性,如检查是否是本轮投票、是否来自LOOKING状态的服务器。

  (3) 处理投票。针对每一个投票,服务器都需要将别人的投票和自己的投票进行PK,PK规则如下

    · 优先检查ZXID。ZXID比较大的服务器优先作为Leader。

    · 如果ZXID相同,那么就比较myid。myid较大的服务器作为Leader服务器。

  对于Server1而言,它的投票是(1, 0),接收Server2的投票为(2, 0),首先会比较两者的ZXID,均为0,再比较myid,此时Server2的myid最大,于是更新自己的投票为(2, 0),然后重新投票,对于Server2而言,其无须更新自己的投票,只是再次向集群中所有机器发出上一次投票信息即可。

  (4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息,对于Server1、Server2而言,都统计出集群中已经有两台机器接受了(2, 0)的投票信息,此时便认为已经选出了Leader。

  (5) 改变服务器状态。一旦确定了Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为FOLLOWING,如果是Leader,就变更为LEADING

选举流程简述

目前有5台服务器,每台服务器均没有数据,它们的编号分别是1,2,3,4,5,按编号依次启动,它们的选择举过程如下:

  • 服务器1启动,给自己投票,然后发投票信息,由于其它机器还没有启动所以它收不到反馈信息,服务器1的状态一直属于Looking。
  • 服务器2启动,给自己投票,同时与之前启动的服务器1交换结果,由于服务器2的编号大所以服务器2胜出,但此时投票数没有大于半数,所以两个服务器的状态依然是LOOKING。
  • 服务器3启动,给自己投票,同时与之前启动的服务器1,2交换信息,由于服务器3的编号最大所以服务器3胜出,此时投票数正好大于半数,所以服务器3成为领导者,服务器1,2成为小弟。
  • 服务器4启动,给自己投票,同时与之前启动的服务器1,2,3交换信息,尽管服务器4的编号大,但之前服务器3已经胜出,所以服务器4只能成为小弟。
  • 服务器5启动,后面的逻辑同服务器4成为小弟。

2. 服务器运行时期的Leader选举

  在Zookeeper运行期间,Leader与非Leader服务器各司其职,即便当有非Leader服务器宕机或新加入,此时也不会影响Leader,但是一旦Leader服务器挂了,那么整个集群将暂停对外服务,进入新一轮Leader选举,其过程和启动时期的Leader选举过程基本一致。假设正在运行的有Server1、Server2、Server3三台服务器,当前Leader是Server2,若某一时刻Leader挂了,此时便开始Leader选举。选举过程如下

  (1) 变更状态。Leader挂后,余下的非Observer服务器都会讲自己的服务器状态变更为LOOKING,然后开始进入Leader选举过程。

  (2) 每个Server会发出一个投票。在运行期间,每个服务器上的ZXID可能不同,此时假定Server1的ZXID为123,Server3的ZXID为122;在第一轮投票中,Server1和Server3都会投自己,产生投票(1, 123),(3, 122),然后各自将投票发送给集群中所有机器。

  (3) 接收来自各个服务器的投票。与启动时过程相同。

  (4) 处理投票。与启动时过程相同,此时,Server1将会成为Leader。

  (5) 统计投票。与启动时过程相同。

2.3 Leader选举实现细节

  1. 服务器状态

  服务器具有四种状态,分别是LOOKING、FOLLOWING、LEADING、OBSERVING。

  LOOKING:寻找Leader状态。当服务器处于该状态时,它会认为当前集群中没有Leader,因此需要进入Leader选举状态。

  FOLLOWING:跟随者状态。表明当前服务器角色是Follower。

  LEADING:领导者状态。表明当前服务器角色是Leader。

  OBSERVING:观察者状态。表明当前服务器角色是Observer。

  2. 投票数据结构

  每个投票中包含了两个最基本的信息,所推举服务器的SID和ZXID,投票(Vote)在Zookeeper中包含字段如下

  id:被推举的Leader的SID。

  zxid:被推举的Leader事务ID。

  electionEpoch:逻辑时钟,用来判断多个投票是否在同一轮选举周期中,该值在服务端是一个自增序列,每次进入新一轮的投票后,都会对该值进行加1操作。

  peerEpoch:被推举的Leader的epoch。

  state:当前服务器的状态。

  (6) 改变服务器的状态。与启动时过程相同。

zk选举过程的更多相关文章

  1. MongoDB Replica Set 选举过程

    什么是选举? 选举是副本集选择某个成员成为primary的过程.primary是一个副本集中唯一能够接收写操作的成员. 下面的事件能够引发一次选举: 第一次初始化一个副本集 Primary失效.rep ...

  2. MongoDB Replica Set 选举过程

    Replica Set 选举过程 心跳检测 假设我们有三个节点的replica sets:X,Y和Z节点.在replica sets结构中,这三个节点每2秒会各自向其它两个节点发送一个心跳检测请求.比 ...

  3. zookeeper的选举过程

    zookeeper的选举过程大致如下: zookeeper的选举过程,就是选出一个在n/2+1个节点中选出一个节点为主节点的过程.比如,当我们启动一个有5个节点的zookeeper集群的时候.首先启动 ...

  4. MongoDB的选举过程(转)

    转自:http://www.mongoing.com/archives/295 MongoDB的复制集具有自动容忍部分节点宕机的功能,在复制集出现问题时时,会触发选举相关的过程,完成主从节点自动切换. ...

  5. Zookeeper 选举过程

    Zookeeper 选举过程 问题 选举过程 服务器之间是怎么通信的? 答:QuorumCnxManager使用TCP-socket实现选举过程中的连接通信 Leader的选举过程在什么时候实现? L ...

  6. 【分布式】Zookeeper的Leader选举-选举过程介绍(经典的Paxos算法解析)

    一.前言 前面学习了Zookeeper服务端的相关细节,其中对于集群启动而言,很重要的一部分就是Leader选举,接着就开始深入学习Leader选举. 二.Leader选举 2.1 Leader选举概 ...

  7. Zookeeper之Leader选举过程

    Leader在集群中是一个非常重要的角色,负责了整个事务的处理和调度,保证分布式数据一致性的关键所在.既然Leader在ZooKeeper集群中这么重要所以一定要保证集群在任何时候都有且仅有一个Lea ...

  8. kafka备份机制——zk选举leader,leader在broker里负责备份

    Kafka架构 如上图所示,一个典型的kafka集群中包含若干producer(可以是web前端产生的page view,或者是服务器日志,系统CPU.memory等),若干broker(Kafka支 ...

  9. zk常见面试题

    一个客户端修改了某个节点的数据,其它客户端能够马上获取到这个最新数据吗 ZooKeeper不能确保任何客户端能够获取(即Read Request)到一样的数据,除非客户端自己要求:方法是客户端在获取数 ...

随机推荐

  1. Queue类

    1.LinkedBlockingQueue:基于链接节点的可选限定的blocking queue . 这个队列排列元素FIFO(先进先出). 队列的头部是队列中最长的元素. 队列的尾部是队列中最短时间 ...

  2. pypcap 安装

    1.下载winpcap开发包 https://www.winpcap.org/devel.htm 下载https://github.com/pynetwork/pypcap/releases最新发布的 ...

  3. 大小端 Big-Endian 与 Little-Endian

    应该说没做底层开发(硬件或驱动)的人很可能不会彻底理解大小端的概念,大小端不是简单的一句“大端在前”还是“小端在前”能够概括的问题.在cpu, 内存, 操作系统, 编译选项, 文件,网络传输中均有大小 ...

  4. leetcode 之LRU Cache(26)

    很实际的一道题.定义一个双向链表list,方便插入和删除:定义一个哈希表,方便查找. 具体的,哈希表存放每个结点的key和它对应的结点的地址:访问结点时,如果结点存在,则将其交换到头部,同是更新哈希表 ...

  5. 在Redis集群中使用pipeline批量插入

    在Redis集群中使用pipeline批量插入 由于项目中需要使用批量插入功能, 所以在网上查找到了Redis 批量插入可以使用pipeline来高效的插入, 示例代码如下: Pipeline p = ...

  6. webpy 调试

    服务器在运行过程中,没办法获得变量的值,就难以发现问题出在什么地方而进行调试

  7. javascript大神修炼记(5)——OOP思想(封装)

    读者朋友们好,前面我们已经讲解了有关javascript的基础,从今天的内容开始,我们就要开始讲有关封装的内容了,这里,我们就一点一点地接触到OOP(面向对象编程)了,如果作为一门语言使用的程序员连O ...

  8. Linux上安装MongoDB

    使用本教程使用.rpm 软件包在红帽企业Linux或CentOS Linux版本6和7上安装MongoDB Community Edition . 平台支持 本安装指南仅支持64位系统.详细信息请参见 ...

  9. nginx代理缓存

    (1)缓存介绍 1.代理服务器端缓存作用 减少后端压力,提高网站并发延时 2.缓存常见类型 服务器端缓存:代理缓存,获取服务器端内容进行缓存 浏览器端缓存 3.nginx代理缓存:proxy_cach ...

  10. 使用for循环打印9×9乘法表

    请使用for循环,倒序打印9×9乘法表. 打印结果如下图所示: 使用for循环打印9×9乘法表 #include <stdio.h> int main() { int i, j, resu ...