[BZOJ5305][Haoi2018]苹果树 组合数
题目描述
小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点.
第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边.
小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间 的距离定义为从一个点走到另一个点的路径经过的边数.
现在他非常好奇, 如果 NNN 天之后小 G 来他家摘苹果, 这个不便度的期望 EEE 是多少. 但是小 C 讨厌分数, 所以他只想知道E×N!E \times N !E×N! 对 PPP 取模的结果, 可以证明这是一个整数.
输入输出格式
输入格式:
从标准输入中读入数据. 一行两个整数 NNN (N<=2000), PPP .
输出格式:
输出到标准输出中. 输出一个整数表示答案.
输入输出样例
说明
以上是所有 N=3N = 3N=3 时可能的苹果树形态, 其中编号表示这个结点是第几天生 长出来的, 显然每种情况两两结点的距离均为 444 .
考虑n个节点二叉树方案为n!
考虑边的贡献。
设子树大小为sz,则在不考虑编号的情况下经过此边sz*(n-sz)次
方案数为子树内方案*子树外方案。
由于i节点子树内节点编号>i,所以方案为sz!*C(n-i,sz-1)。
子树外方案为i!*(i+1-2)*(i+2-2)*(i+3-2)*......*(n-sz+1-2)。
化简为
i*(i-1)*(n-sz-1)!
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
inline ll read() {
ll x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
ll n,p;
ll jc[],c[][];
int main() {
n=read(),p=read();
c[][]=;
jc[]=;
for(int i=;i<=n;i++) {
c[i][]=;
jc[i]=jc[i-]*i;jc[i]%=p;
for(int j=;j<=i;j++) c[i][j]=(c[i-][j]+c[i-][j-])%p;
}
ll ans=;
for(int i=;i<=n;i++) {
for(int sz=;sz<=n-i+;sz++) {
ans+=sz*(n-sz)*i*(i-)%p*c[n-i][sz-]%p*jc[sz]%p*jc[n-sz-]%p;
ans%=p;
}
}
printf("%lld\n",ans);
}
[BZOJ5305][Haoi2018]苹果树 组合数的更多相关文章
- 洛谷P4492 [HAOI2018]苹果树(组合数)
题意 题目链接 Sol 有点自闭,.我好像对组合数一窍不通(~~~~) Orz shadowice // luogu-judger-enable-o2 #include<bits/stdc++. ...
- BZOJ5305 HAOI2018苹果树(概率期望+动态规划)
每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...
- BZOJ5305 [Haoi2018]苹果树 【组合数学】
题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...
- [BZOJ5305][HAOI2018]苹果树(DP)
首先注意到每种树都是等概率出现的,于是将问题转化成计数求和问题. f[n]表示所有n个点的树的两两点距离和的总和. g[n]表示所有n个点的树的所有点到根的距离和的总和. h[n]表示n个点的树的可能 ...
- Luogu 4492 [HAOI2018]苹果树 组合数
https://www.luogu.org/problemnew/show/P4492 找每个编号的点的父边的贡献,组合数和阶乘就能算了. 我考场上怎么就是没想到呢. 调了好久好久好久好久调不出来,样 ...
- [BZOJ5305][HAOI2018]苹果树 组合数学
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...
- [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数
Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...
- BZOJ5305: [HAOI2018]苹果树
传送门 果然只有我这种菜鸡才会用这种菜鸡做法QwQ 对于一类要求期望的题目,有一个无脑的做法: 设概率为 \(f\),期望为 \(g\) 每次合并两个二元组 \(<f_1,g_1>,< ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
随机推荐
- java AES 加密解密工具(Advanced Encryption Standard)发现明文相同但每次重启服务后密文就会不同于是有了改进
1.通用方法 package com.qlkj.hzd.commom.utils; import javax.crypto.*; import java.io.UnsupportedEncodingE ...
- 中国MOOC_面向对象程序设计——Java语言_第1周 类与对象
第1周编程题 查看帮助 返回 我们在题目说明中给出了一部分代码,你需要在这部分代码的基础上,按照题目说明编写代码,然后将两部分代码一起提交. 依照学术诚信条款,我保证此作业是本人独立完成的. 温馨 ...
- HDU 5650 异或
so easy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- luncence
问题的提出: 我们在访问淘宝,京东这些商城系统的时候,我们可以随意的在文本框输入关键字就可以获取到所想要的信息或者相关的信息,那么我们到底是如何实现这个功能的呢,为什么可以随意的输入就可以显示相关的信 ...
- bzoj 1123 [POI2008]BLO Tarjan求割点
[POI2008]BLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1540 Solved: 711[Submit][Status][Discu ...
- JQuery学习六
<JQuery cookie>插件 cookie是保存在浏览器上的内容,用户在这次浏览页面的时候向cookie中保存文本内容.下次再访问页面的时侯就可以取出来上次保存的内容.这样可以得到上 ...
- HDU3376 最小费用最大流 模板2
Matrix Again Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)To ...
- liunx环境下安装mysql数据库2
mysql的安装和配置[1]解压mysql安装包,进入mysql目录,添加用户,并安装,将权限授权给mysql用户
- WPF 与设备无关的单位
WPF从发布之日起,一直将“分辨率无关(resolution independence)”作为其亮点,声称使用WPF制作的用户界面在轻巧的Ultra-Mobile PC的屏幕上和在50英寸的电视机上都 ...
- Log4J使用实例---日志进行邮件发送或是存入数据库
部分转摘:http://blog.csdn.net/azhao_dn/article/details/9118667 1.根类别(在类别层次结构的顶部,即全局性的日志级别) 配置根Logger,其语法 ...