HDU.2640 Queuing (矩阵快速幂)

题意分析

不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值。

用F(n)表示串长为n的合法串的个数。

首先不难通过枚举发现F(0) = 0, F(1) =2, F(3) = 6, F(4) = 9, F(5) = 15.然后引用网上如何求解递推公式的详细解释:

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);

如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是

mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)

所以f(n)=f(n-1)+f(n-3)+f(n-4)

我个人比较喜欢用Trie示意图的方法来求解递推结果,如图所示:

然后构造如图矩阵

代码总览

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N = 4;
int MOD;
int st[] = {0,2,4,6,9,15};
typedef struct{
int matrix[Dmax][Dmax];
void init()//初始化为单位矩阵
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT;
MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD) ) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, int t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a,MAT & temp)
{
memset(a.matrix,0,sizeof(a.matrix));
memset(temp.matrix,0,sizeof(temp.matrix));
for(int i = 0; i<N;++i) a.matrix[i][0] = st[5-i];
for(int i = 0; i<N;++i){if(i == 1) continue;temp.matrix[0][i] = 1;}
for(int i = 1;i<N;++i) temp.matrix[i][i-1] = 1;
}
void CAL(MAT a)
{
printf("%d\n",a.matrix[0][0] % MOD);
}
int main()
{
//freopen("in.txt","r",stdin);
int K;
while(scanf("%d%d",&K,&MOD) != EOF){
if(K<=5){
printf("%d\n",st[K]%MOD);
continue;
}
MAT init,temp;
IN(init,temp);
temp = POW(temp,K-5);
temp = MUL(temp,init);
CAL(temp);
}
return 0;
}

HDU.2640 Queuing (矩阵快速幂)的更多相关文章

  1. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  2. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  3. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 6395 分段矩阵快速幂 HDU 6386 建虚点+dij

    http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Me ...

  5. HDU 6470 【矩阵快速幂】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 写这道题是为了让自己不要忘记矩阵快速幂如何推出矩阵式子的. 注意 代码是TLE的!! #incl ...

  6. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  7. HDU 1575(裸矩阵快速幂)

    emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...

  8. hdu 6395Sequence【矩阵快速幂】【分块】

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  9. Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)

    ;i<=n;i++) { )ans=(ans*+)%m; %m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 ...

随机推荐

  1. VIN码识别:让VIN码采集so easy!

    近几年汽车后市场呈喷井式发展,在过去的半年,汽车后市场规模已高达万亿级,产业前景广阔,与此同时行业运营也受信息区域化.数据不统一的制约,让企业面临着效率低下.规模化运行困难的痛点. 在汽车配件市场中, ...

  2. selenium自动化测试资源整理

    1. 所有版本chrome下载 是不是很难找到老版本的chrome?博主收集了几个下载chrome老版本的网站,其中哪个下载的是原版的就不得而知了. http://www.slimjet.com/ch ...

  3. Java开发工程师(Web方向) - 01.Java Web开发入门 - 第3章.Tomcat

    第3章--Tomcat Tomcat安装与运行 Tomcat:目前最常用的基于java的web应用服务器 本课程中所有的Java代码最终都需要部署到Tomcat中运行 Tomcat的配置文件是XML的 ...

  4. 【springmvc+mybatis项目实战】杰信商贸-1.项目背景

    1.项目背景杰信项目物流行业的项目,杰信商贸是国际物流行业一家专门从事进出口玻璃器皿贸易的公司.公司总部位于十一个朝代的帝王之都西安,业务遍及欧美.随着公司不断发展壮大,旧的信息系统已无法满足公司的快 ...

  5. Flex 布局浅析

    除了 CSS 中传统的布局系统之外,CSS3还提供了一个新布局系统.在这个新的框模型中,框的子代采用水平或垂直布局,而且可将未使用的空间分配给特定的子代,或者通过“弹性”分配给应展开的子代,在各子代间 ...

  6. Map Reduce Application(Join)

    We are going to explain how join works in MR , we will focus on reduce side join and map side join. ...

  7. ThinkPHP - 1 - 本地部署

    ThinkPHP ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时 ...

  8. psp1111

    1 本周psp 2.本周进度条 3.本周累积进度图 代码累积折线图 博文字数累积折线图 4.本周PSP饼状图

  9. 算法与数据结构5.2 Bubble Sort

    ★实验任务 给定一个 1~N 的排列 P,即 1 到 N 中的每个数在 P 都只出现一次. 现在要 对排列 P 进行冒泡排序,代码如下: for (int i = 1; i <= N; ++i) ...

  10. js中斜杠转义

    js中“/”不需要转义. if(myPath.indexOf("/Upload/EmailFile/")!=-1){ alert("有附件!")}