HDU.2640 Queuing (矩阵快速幂)

题意分析

不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值。

用F(n)表示串长为n的合法串的个数。

首先不难通过枚举发现F(0) = 0, F(1) =2, F(3) = 6, F(4) = 9, F(5) = 15.然后引用网上如何求解递推公式的详细解释:

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);

如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是

mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)

所以f(n)=f(n-1)+f(n-3)+f(n-4)

我个人比较喜欢用Trie示意图的方法来求解递推结果,如图所示:

然后构造如图矩阵

代码总览

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <sstream>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#define INF 0x3f3f3f3f
#define nmax 200
#define MEM(x) memset(x,0,sizeof(x))
using namespace std;
const int Dmax = 11;
int N = 4;
int MOD;
int st[] = {0,2,4,6,9,15};
typedef struct{
int matrix[Dmax][Dmax];
void init()//初始化为单位矩阵
{
memset(matrix,0,sizeof(matrix));
for(int i = 0; i<Dmax;++i) matrix[i][i] = 1;
}
}MAT;
MAT ADD(MAT a, MAT b)
{
for(int i = 0; i<N;++i){
for(int j = 0;j<N;++j){
a.matrix[i][j] +=b.matrix[i][j];
a.matrix[i][j] %= MOD;
}
}
return a;
}
MAT MUL(MAT a, MAT b)
{
MAT ans;
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
ans.matrix[i][j] = 0;
for(int k = 0; k<N;++k){
ans.matrix[i][j] += ( (a.matrix[i][k] % MOD) * (b.matrix[k][j] % MOD) ) % MOD;
}
ans.matrix[i][j] %= MOD;
}
}
return ans;
}
MAT POW(MAT a, int t)
{
MAT ans; ans.init();
while(t){
if(t&1) ans = MUL(ans,a);
t>>=1;
a = MUL(a,a);
}
return ans;
}
void OUT(MAT a)
{
for(int i = 0; i<N;++i){
for(int j = 0; j<N;++j){
printf("%5d",a.matrix[i][j]);
}
printf("\n");
}
}
void IN(MAT & a,MAT & temp)
{
memset(a.matrix,0,sizeof(a.matrix));
memset(temp.matrix,0,sizeof(temp.matrix));
for(int i = 0; i<N;++i) a.matrix[i][0] = st[5-i];
for(int i = 0; i<N;++i){if(i == 1) continue;temp.matrix[0][i] = 1;}
for(int i = 1;i<N;++i) temp.matrix[i][i-1] = 1;
}
void CAL(MAT a)
{
printf("%d\n",a.matrix[0][0] % MOD);
}
int main()
{
//freopen("in.txt","r",stdin);
int K;
while(scanf("%d%d",&K,&MOD) != EOF){
if(K<=5){
printf("%d\n",st[K]%MOD);
continue;
}
MAT init,temp;
IN(init,temp);
temp = POW(temp,K-5);
temp = MUL(temp,init);
CAL(temp);
}
return 0;
}

HDU.2640 Queuing (矩阵快速幂)的更多相关文章

  1. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  2. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  3. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. HDU 6395 分段矩阵快速幂 HDU 6386 建虚点+dij

    http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Me ...

  5. HDU 6470 【矩阵快速幂】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 写这道题是为了让自己不要忘记矩阵快速幂如何推出矩阵式子的. 注意 代码是TLE的!! #incl ...

  6. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  7. HDU 1575(裸矩阵快速幂)

    emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][ ...

  8. hdu 6395Sequence【矩阵快速幂】【分块】

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  9. Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)

    ;i<=n;i++) { )ans=(ans*+)%m; %m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 ...

随机推荐

  1. Qt-QML-自定义个自己的文本Text

    好久都没有正经的更新自己的文章了,这段时间也辞职了,听了小爱的,准备买个碗,自己当老板,下面请欣赏效果图 这个界面布局就是自己是在想不到啥了,按照常规汽车导航的布局布局了一下,主要看内容哈,看看这个文 ...

  2. Qt PC 安卓 tcp传输文件

    废话不多说,如题,上代码 qt PC端 头文件 //网络部分 #include <QTcpSocket> #include <QFile> #include <QFile ...

  3. MaxScript代码补全插件

    MaxScript代码补全插件 作者Nik,原文发布于ScriptSpot 安装后max自带脚本编辑器会有自动补全,效果如下:

  4. js 加密 crypto-js des加密

    js 加密 crypto-js    https://www.npmjs.com/package/crypto-js   DES  举例:   js 引入:   <script src=&quo ...

  5. 牛客网暑期ACM多校训练营(第五场):F - take

    链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...

  6. 使用es6总结笔记

    1. let.const 和 block 作用域 在ES6以前,var关键字声明变量.无论声明在何处,都会被视为声明在函数的最顶部(不在函数内即在全局作用域的最顶部). let 关键词声明的变量不具备 ...

  7. CSP201312-2:ISBN号码

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  8. JDK源码分析:Integer.java部分源码解析

    1)声明部: public final class Integer extends Number implements Comparable<Integer> extends Number ...

  9. LeetCode 135——分发糖果

    1. 题目 2. 解答 初始化左序奖赏全为 1,从左往右遍历,如果右边的人评分比左边高,右边奖赏比左边奖赏增 1. 初始化右序奖赏全为 1,从右往左遍历,如果左边的人评分比右边高,左边奖赏比右边奖赏增 ...

  10. php常用方法汇总

    xml格式转成array <?php $str='<xml><node><![CDATA[content]]></node></xml> ...