BZOJ4105 [Thu Summer Camp 2015]平方运算 【线段树】
题目链接
题解
平方操作orz,虽说应该是线段树,但是不会维护啊QAQ
小瞧一眼题解。。。
平方成环?环长\(lcm\)小于\(60\)?
果然还是打表找规律题。。。。
那就很好做了,先预处理每个数是否在环上,如果当前区间存在数不在环上,就暴力修改
如果当前区间都在环上了,就处理出环,之后每次修改只在环上走一步即可
每次修改可能会重置\(logn\)个节点的信息,由于重置一次要求出环,是\(O(60)\)的,所以修改总复杂度是\(O(60nlogn)\)的,可以接受
#include<algorithm>
#include<iostream>
#include<cstdio>
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define ls (u << 1)
#define rs (u << 1 | 1)
#define res register
using namespace std;
const int maxn = 100005,maxm = 10005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int ou[20];
inline void write(int x){
if (!x) {putchar('0'); return;}
int tmp = 0;
while (x) ou[++tmp] = x % 10,x /= 10;
while (tmp) putchar(ou[tmp--] + '0');
}
int n,m,P,A[maxn],Nxt[maxn],inc[maxn];
int sum[maxn << 2],tag[maxn << 2],val[maxn << 2];
int pos[maxn << 2],siz[maxn << 2];
int cir[maxn << 2][65],L,R;
inline int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
inline int lcm(int a,int b){return a / gcd(a,b) * b;}
void upd(int u){
sum[u] = sum[ls] + sum[rs];
val[u] = val[ls] & val[rs];
if (val[u]){
pos[u] = 0;
siz[u] = lcm(siz[ls],siz[rs]);
for (int i = pos[ls],j = pos[rs],k = 0; k < siz[u]; k++){
cir[u][k] = cir[ls][i] + cir[rs][j];
i = i + 1 == siz[ls] ? 0 : i + 1;
j = j + 1 == siz[rs] ? 0 : j + 1;
}
}
}
void pd(int u){
if (tag[u]){
pos[ls] = pos[ls] + tag[u];
pos[rs] = pos[rs] + tag[u];
if (pos[ls] >= siz[ls]) pos[ls] %= siz[ls];
if (pos[rs] >= siz[rs]) pos[rs] %= siz[rs];
sum[ls] = cir[ls][pos[ls]];
sum[rs] = cir[rs][pos[rs]];
tag[ls] += tag[u]; tag[rs] += tag[u];
tag[u] = 0;
}
}
void build(int u,int l,int r){
if (l == r){
sum[u] = A[l];
val[u] = inc[A[l]];
if (val[u]){
pos[u] = 0;
siz[u] = 0;
cir[u][siz[u]++] = A[l];
for (int i = Nxt[A[l]]; i != A[l]; i = Nxt[i])
cir[u][siz[u]++] = i;
}
return;
}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
upd(u);
}
void modify(int u,int l,int r){
if (l == r){
if (val[u]){
pos[u] = (pos[u] + 1) % siz[u];
sum[u] = cir[u][pos[u]];
}
else {
sum[u] = Nxt[sum[u]];
if (inc[sum[u]]){
val[u] = true;
pos[u] = 0;
siz[u] = 0;
cir[u][siz[u]++] = sum[u];
for (int i = Nxt[sum[u]]; i != sum[u]; i = Nxt[i])
cir[u][siz[u]++] = i;
}
}
return;
}
if (l >= L && r <= R && val[u]){
pos[u] == siz[u] - 1 ? pos[u] = 0 : pos[u]++;
sum[u] = cir[u][pos[u]];
tag[u]++;
return;
}
pd(u);
int mid = l + r >> 1;
if (mid >= L) modify(ls,l,mid);
if (mid < R) modify(rs,mid + 1,r);
upd(u);
}
int query(int u,int l,int r){
if (l >= L && r <= R) return sum[u];
pd(u);
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid);
if (mid < L) return query(rs,mid + 1,r);
return query(ls,l,mid) + query(rs,mid + 1,r);
}
int vis[maxn],fa[maxn],now;
void dfs(int u){
vis[u] = now;
if (vis[Nxt[u]]){
if (vis[Nxt[u]] != now) return;
else {
for (int i = u; i != Nxt[u]; i = fa[i])
inc[i] = true;
inc[Nxt[u]] = true;
return;
}
}
fa[Nxt[u]] = u; dfs(Nxt[u]);
}
int main(){
n = read(); m = read(); P = read(); REP(i,n) A[i] = read();
for (int i = 0; i < P; i++) Nxt[i] = i * i % P;
for (int i = 0; i < P; i++)
if (!vis[i]){now++; dfs(i);}
build(1,1,n);
int opt;
while (m--){
opt = read(); L = read(); R = read();
if (!opt) modify(1,1,n);
else write(query(1,1,n)),putchar('\n');
}
return 0;
}
BZOJ4105 [Thu Summer Camp 2015]平方运算 【线段树】的更多相关文章
- 2018.10.18 bzoj4105: [Thu Summer Camp 2015]平方运算(线段树)
传送门 线段树妙题. 显然平方几次就会循环(打表证明不解释). 然后所有环长度的lcmlcmlcm不大于70. 因此维护一下当前区间中的节点是否全部在环上. 不是直接暴力到叶子节点修改. 否则整体打标 ...
- bzoj4105: [Thu Summer Camp 2015]平方运算
填坑 我不知道怎么算的,但是所有环的LCM数不会超过60 然后用线段树维护这个东西,每个节点记录子树内的循环节 没到循环节的暴力枚举 复杂度是nlogn再乘以循环节长度 #include<cst ...
- bzoj:4105: [Thu Summer Camp 2015]平方运算
Description Input 第一行有三个整数N,M,p,分别代表序列的长度.平方操作与询问操作的总次数以及在平方操作中所要模的数. 接下来一行N个数代表一开始的序列{X1,X2,... ...
- 4105: [Thu Summer Camp 2015]平方运算
首先嘛这道题目只要知道一个东西就很容易了:所有循环的最小公约数<=60,成一条链的长度最大为11,那么我们就可以用一个很裸的方法.对于在链上的数,我们修改直接暴力找出并修改.对于在环上的数,我们 ...
- [Thu Summer Camp 2015]解密运算
4104: [Thu Summer Camp 2015]解密运算 Time Limit: 10 Sec Memory Limit: 512 MB Description 对于一个长度为N的字符串,我 ...
- 【BZOJ 4104】 4104: [Thu Summer Camp 2015]解密运算 (智商)
4104: [Thu Summer Camp 2015]解密运算 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 370 Solved: 237 De ...
- BZOJ4104:[Thu Summer Camp 2015]解密运算——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4104 对于一个长度为N的字符串,我们在字符串的末尾添加一个特殊的字符".".之 ...
- BZOJ4104 [Thu Summer Camp 2015]解密运算 【乱搞】
题目链接 BZOJ4104 题解 我们将已知字符排序,由循环就可以得到一个对应关系 如样例就是: 0->第5行 1->第1行 1->第2行 1->第3行 1->第5行 2 ...
- bzoj 4104 [Thu Summer Camp 2015]解密运算——思路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4104 想了很久,想出一个 nlogn (也许是 n2logn )的,可惜空间是 n2 . 已 ...
随机推荐
- unity3d 角色头顶信息3D&2D遮挡解决方案(二)
在阅读本文之前请先阅读上一篇文章:http://www.cnblogs.com/shenggege/p/4179012.html 本来一篇文章就可以说完了,但是上次只是实现了已知的一些功能 后来在实际 ...
- 「题目代码」P1060~P1065(Java)
P1060 谭浩强C语言(第三版)习题7.5 注意行末空格. import java.util.*; import java.io.*; import java.math.*; import java ...
- 苏醒的巨人----CSRF
一.CSRF 跨站请求伪造(Cross-Site Request Forgery,CSRF)是指利用 受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点 击恶意链接或者访问包含攻击代码的页 ...
- APP功能性测试-2
安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...
- Codeforces Round #495 (Div. 2) Sonya and Matrix
正常没有正方形的限制下,值为i的点个数4i 那么从0开始遍历,第一个不为4i的值就是min(x, y) 由于对称性我们姑且令x为这个值 我们先列举n*m=t的各种情况 对于一对n, m.我们已经知道n ...
- python中出现ascii编码问题的解决办法
一劳永逸,一次性全盘解决的办法 环境变量中去设置 以centos 7为例: vim /etc/profile export PYTHONIOENCODING=utf-8 source /etc/pro ...
- Java并发基础--Lock的学习
一.Lock的出现 Lock的主要作用实现线程之间的同步互斥,与synchronized关键字的效果是一样的,synchronized是Java语言内置的特性,那么为什么又出现了Lock呢?原因是sy ...
- Ubuntu—终端下重启与关机
重启命令 : 1.shutdown -r now 立刻重启 2.shutdown -r 10 过10分钟自动重启 3.shutdown -r 20:35 在时间为20:35 ...
- Python3 Tkinter-Spinbox
1.创建 from tkinter import * root=Tk() Spinbox(root).pack() root.mainloop() 2.参数 from_ 最小值 to 最大 ...
- sqlserver 2008 merger语句
Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根据与源 ...