点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积。但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以直接暴力找,因为点分树只有log层,每个点最多被找log次。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,p[N],size[N],t,root,degree[N],ans;
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),size[k]+=size[edge[i].to];
}
int find(int k,int root)
{
int cnt=k<root;
for (int i=p[k];i;i=edge[i].nxt)
cnt+=find(edge[i].to,root);
return cnt;
}
void calc(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
{
if ((size[edge[i].to]<<)<size[k]) ans=1ll*ans*size[edge[i].to]%P;
else ans=1ll*ans*(size[edge[i].to]-find(edge[i].to,k))%P;
calc(edge[i].to);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4835.in","r",stdin);
freopen("bzoj4835.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();read();
t=;for (int i=;i<=n;i++) p[i]=,degree[i]=;ans=;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);degree[y]++;
}
for (int i=;i<=n;i++) if (!degree[i]) root=i;
dfs(root);
calc(root);
printf("%d\n",ans);
}
return ;
}

BZOJ4835 遗忘之树的更多相关文章

  1. bzoj 4835: 遗忘之树 [树形DP]

    4835: 遗忘之树 题意:点分治,选标号最小的重心,上一次重心向下一次重心连有向边,求原树方案数. md我真不知道当初比赛时干什么去了...现在一眼秒啊... \(size[v]=\frac{siz ...

  2. BZOJ 4835: 遗忘之树

    传送门 首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数 发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变 显然是错的, ...

  3. HDU2852【树状数组+二分】

    额..有点遗忘了树状数组特性了..印象中一直是前缀和,然后一定要记住树状数组是把给出的值(值太大可能可以离散化)也就是点到了区间,然后这个点存的值就是由自己来定了. 题意: 百度. 思路: 树状数组是 ...

  4. URAL 1992 CVS

    CVS 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=1992 Description Yoda: Visit I will the c ...

  5. 2000条你应知的WPF小姿势 基础篇<40-44 启动关闭,Xaml,逻辑树>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. bzoj4785 [Zjoi2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进 ...

  7. 二叉排序树、平衡二叉树、B树&B+树、红黑树的设计动机、缺陷与应用场景

    之前面试时曾被问到"如果实现操作系统的线程调度应该采用什么数据结构?",因为我看过ucore的源码,知道ucore是采用斜堆的方式实现的,可以做到O(n)的插入.O(1)的查找.我 ...

  8. [ZJOI2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来 ...

  9. 从Trie树(字典树)谈到后缀树

    转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...

随机推荐

  1. 北京Uber优步司机奖励政策(1月13日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 成都Uber优步司机奖励政策(3月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 成都Uber优步司机奖励政策(2月22日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 人脸检测库libfacedetection介绍

    libfacedetection是于仕琪老师放到GitHub上的二进制库,没有源码,它的License是MIT,可以商用.目前只提供了windows 32和64位的release动态库,主页为http ...

  5. Chrome模拟平板调试

    1. 按F12,打开开发者工具,右上角,点击红圈中的标志.然后在弹出的面板中点击'Emulation'. 2. 会看到左侧的四个选项卡  Device 设备.Screen 屏幕.User Agent ...

  6. Java 快速排序讲解

    快速排序由于排序效率在同为 O(nlogn) 的几种排序方法中效率最高,因此经常被采用.再加上快速排序思想——分治法也确实非常实用,所以 在各大厂的面试习题中,快排总是最耀眼的那个.要是你会的排序算法 ...

  7. SpringBoot学习:整合shiro(验证码功能和登录次数限制功能)

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)验证码 首先login.jsp里增加了获取验证码图片的标签: <body s ...

  8. uvaoj 489 - Hangman Judge(逻辑+写代码能力)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. 完整的正则表达式知识汇总(Python知识不断更新)

    ## 大纲: ## 一.正则概述 1.正则是什么 正则就是一套规则,或者语法 2.正则的作用 让我们判断是否符合我们的的规则,或者根据规则找到符合规则的数据 3.使用场景 可以用正则判断我们输入的邮箱 ...

  10. lintcode491 回文数

    回文数 判断一个正整数是不是回文数. 回文数的定义是,将这个数反转之后,得到的数仍然是同一个数. 注意事项 给的数一定保证是32位正整数,但是反转之后的数就未必了. 您在真实的面试中是否遇到过这个题? ...