点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积。但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以直接暴力找,因为点分树只有log层,每个点最多被找log次。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,p[N],size[N],t,root,degree[N],ans;
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),size[k]+=size[edge[i].to];
}
int find(int k,int root)
{
int cnt=k<root;
for (int i=p[k];i;i=edge[i].nxt)
cnt+=find(edge[i].to,root);
return cnt;
}
void calc(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
{
if ((size[edge[i].to]<<)<size[k]) ans=1ll*ans*size[edge[i].to]%P;
else ans=1ll*ans*(size[edge[i].to]-find(edge[i].to,k))%P;
calc(edge[i].to);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4835.in","r",stdin);
freopen("bzoj4835.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();read();
t=;for (int i=;i<=n;i++) p[i]=,degree[i]=;ans=;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);degree[y]++;
}
for (int i=;i<=n;i++) if (!degree[i]) root=i;
dfs(root);
calc(root);
printf("%d\n",ans);
}
return ;
}

BZOJ4835 遗忘之树的更多相关文章

  1. bzoj 4835: 遗忘之树 [树形DP]

    4835: 遗忘之树 题意:点分治,选标号最小的重心,上一次重心向下一次重心连有向边,求原树方案数. md我真不知道当初比赛时干什么去了...现在一眼秒啊... \(size[v]=\frac{siz ...

  2. BZOJ 4835: 遗忘之树

    传送门 首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数 发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变 显然是错的, ...

  3. HDU2852【树状数组+二分】

    额..有点遗忘了树状数组特性了..印象中一直是前缀和,然后一定要记住树状数组是把给出的值(值太大可能可以离散化)也就是点到了区间,然后这个点存的值就是由自己来定了. 题意: 百度. 思路: 树状数组是 ...

  4. URAL 1992 CVS

    CVS 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=1992 Description Yoda: Visit I will the c ...

  5. 2000条你应知的WPF小姿势 基础篇<40-44 启动关闭,Xaml,逻辑树>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. bzoj4785 [Zjoi2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进 ...

  7. 二叉排序树、平衡二叉树、B树&B+树、红黑树的设计动机、缺陷与应用场景

    之前面试时曾被问到"如果实现操作系统的线程调度应该采用什么数据结构?",因为我看过ucore的源码,知道ucore是采用斜堆的方式实现的,可以做到O(n)的插入.O(1)的查找.我 ...

  8. [ZJOI2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来 ...

  9. 从Trie树(字典树)谈到后缀树

    转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...

随机推荐

  1. APP如何发布到Google play 商店

    APP如何发布到Google play 商店?以及有哪些需要注意的点 2015-05-13 10:07 19773人阅读 评论(1) 收藏 举报  分类: iPhone游戏开发(330)  链接:ht ...

  2. 北京Uber优步司机奖励政策(2月25日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 北京Uber优步司机奖励政策(2月22日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 【POJ1733】Parity game

    [POJ1733]Parity game 题面 vjudge 题解 比较简单的分类并查集 将一个查询操作看作前缀和\(s_r-s_{l-1}\)的奇偶性 将每个点拆成一奇一偶然后分别连边即可 如果一个 ...

  5. 180713-Spring之借助Redis设计访问计数器之扩展篇

    之前写了一篇博文,简单的介绍了下如何利用Redis配合Spring搭建一个web的访问计数器,之前的内容比较初级,现在考虑对其进行扩展,新增访问者记录 记录当前站点的总访问人数(根据Ip或则设备号) ...

  6. mysql面试常见题目3

    三十六大 冯唐 春水初生, 春林初盛, 春风十里,不如你. 秋风落叶, 秋雨绵绵, 愁心上秋,只为你. 某个员工信息表结构和数据如下: id name dept salary edlevel hire ...

  7. 运用GamePlayKit的GKEntity及GKComponent 的iOS游戏开发实例

    GameplayKit是一个面向对象的框架,为构建游戏提供基础工具和技术. GameplayKit包含用于设计具有功能性,可重用架构的游戏的工具,以及用于构建和增强诸如角色移动和对手行为的游戏玩法特征 ...

  8. Spring 配置请求过滤器,编码格式设为UTF-8,避免中文乱码

    <!-- 配置请求过滤器,编码格式设为UTF-8,避免中文乱码--> <filter> <filter-name>springUtf8Encoding</fi ...

  9. spring boot 报错 Error creating bean with name

    Application 启动类 要和父目录平级

  10. 原生js实现轮播图原理

    轮播图的原理1.图片移动实现原理:利用浮动将所有所有照片依次排成一行,给这一长串图片添加一个父级的遮罩,每次只显示一张图,其余的都隐藏起来.对图片添加绝对定位,通过控制left属性,实现照片的移动. ...