点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积。但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以直接暴力找,因为点分树只有log层,每个点最多被找log次。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,p[N],size[N],t,root,degree[N],ans;
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),size[k]+=size[edge[i].to];
}
int find(int k,int root)
{
int cnt=k<root;
for (int i=p[k];i;i=edge[i].nxt)
cnt+=find(edge[i].to,root);
return cnt;
}
void calc(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
{
if ((size[edge[i].to]<<)<size[k]) ans=1ll*ans*size[edge[i].to]%P;
else ans=1ll*ans*(size[edge[i].to]-find(edge[i].to,k))%P;
calc(edge[i].to);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4835.in","r",stdin);
freopen("bzoj4835.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();read();
t=;for (int i=;i<=n;i++) p[i]=,degree[i]=;ans=;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);degree[y]++;
}
for (int i=;i<=n;i++) if (!degree[i]) root=i;
dfs(root);
calc(root);
printf("%d\n",ans);
}
return ;
}

BZOJ4835 遗忘之树的更多相关文章

  1. bzoj 4835: 遗忘之树 [树形DP]

    4835: 遗忘之树 题意:点分治,选标号最小的重心,上一次重心向下一次重心连有向边,求原树方案数. md我真不知道当初比赛时干什么去了...现在一眼秒啊... \(size[v]=\frac{siz ...

  2. BZOJ 4835: 遗忘之树

    传送门 首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数 发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变 显然是错的, ...

  3. HDU2852【树状数组+二分】

    额..有点遗忘了树状数组特性了..印象中一直是前缀和,然后一定要记住树状数组是把给出的值(值太大可能可以离散化)也就是点到了区间,然后这个点存的值就是由自己来定了. 题意: 百度. 思路: 树状数组是 ...

  4. URAL 1992 CVS

    CVS 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=1992 Description Yoda: Visit I will the c ...

  5. 2000条你应知的WPF小姿势 基础篇<40-44 启动关闭,Xaml,逻辑树>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. bzoj4785 [Zjoi2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进 ...

  7. 二叉排序树、平衡二叉树、B树&B+树、红黑树的设计动机、缺陷与应用场景

    之前面试时曾被问到"如果实现操作系统的线程调度应该采用什么数据结构?",因为我看过ucore的源码,知道ucore是采用斜堆的方式实现的,可以做到O(n)的插入.O(1)的查找.我 ...

  8. [ZJOI2017]树状数组

    Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来 ...

  9. 从Trie树(字典树)谈到后缀树

    转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...

随机推荐

  1. python中利用少量代码快速实现从类对象中抽取所需属性的一种实践

    项目中有可能会碰到这样一种场景: 根据一个id,查询得到和id对应的完整数据信息存储对象,比如书籍id到书籍详细信息,用户id到用户详细信息等,详细信息字段可能包括几十甚至上百个数据字段,真正需要返回 ...

  2. Codeforces Round #460 (Div. 2) 前三题

    Problem A:题目传送门 题目大意:给你N家店,每家店有不同的价格卖苹果,ai元bi斤,那么这家的苹果就是ai/bi元一斤,你要买M斤,问最少花多少元. 题解:贪心,找最小的ai/bi. #in ...

  3. [python3.x]win 7 下Pyinstaller库的安装与使用---探索之路

    一.下载安装包 cmd进入命令行,执行命令:pip install https://github.com/pyinstaller/pyinstaller/archive/develop.tar.gz ...

  4. 初识c++模板元编程

    模板元编程(Template metaprogramming,简称TMP)是编译器内执行的程序,编译器读入template,编译输出的结果再与其他源码一起经过普通编译过程生成目标文件.通俗来说,普通运 ...

  5. .net web api应用遇到的一些问题

    1.调用webapi接口时,碰到一种情况: 通过webapi调用接口时,返回的json数据,死活转换不成对象,转换的对象一直为null: webapi端代码: [HttpGet] public str ...

  6. 运用GamePlayKit的GKEntity及GKComponent 的iOS游戏开发实例

    GameplayKit是一个面向对象的框架,为构建游戏提供基础工具和技术. GameplayKit包含用于设计具有功能性,可重用架构的游戏的工具,以及用于构建和增强诸如角色移动和对手行为的游戏玩法特征 ...

  7. [JSON].toString()

    语法:[JSON].toString() 返回:[String] 说明:获取[JSON]实例的字符串结果 示例: <% jsonString = "{div: 'hello word! ...

  8. js设计模式:工厂模式、构造函数模式、原型模式、混合模式

    一.js面向对象程序 var o1 = new Object();     o1.name = "宾宾";     o1.sex = "男";     o1.a ...

  9. 【第四章】Shell 条件测试表达式

    shell中条件测试的三种格式: 格式1: test 条件表达式格式2: [ 条件表达式 ]格式3: [[ 条件表达式 ]] 使用test: [root@host- ~]# test -f file ...

  10. springMVC怎么改变form的提交方式为put或者delete

    想着练习一下创建restful风格的网站呢,结果发现在jsp页面上并不能灵活使用put和delete提交方式.下面我的解决办法 一. form 只支持post和get两种提交方式,只支持get提交方式 ...