BZOJ4011 HNOI2015落忆枫音(动态规划+拓扑排序)
DAG中每个点选一条入边就可以构成一棵有向树,所以如果没有环答案就是∏degreei。
考虑去掉含环的答案。可以看做把环缩点,剩下的点仍然可以任意选入边。于是去除的方案数即为∏degreei/∏degreek,k为环上点。
环相当于考虑新加入边的终点到起点的所有路径。设f[i]为i为起点的所有路径提供的上述贡献,则f[i]=Σf[k]/degree[i]。拓扑排序之后dp即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define M 200010
#define P 1000000007
int n,m,p[N],u,v,degree[N],d[N],f[N],q[N],inv[N],t=,ans=;
struct data{int to,nxt;
}edge[M];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void topsort()
{
int head=,tail=;q[]=;memcpy(d,degree,sizeof(degree));d[v]--;
while (tail<n)
{
int x=q[++head];
for (int i=p[x];i;i=edge[i].nxt)
{
d[edge[i].to]--;
if (!d[edge[i].to]) q[++tail]=edge[i].to;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4011.in","r",stdin);
freopen("bzoj4011.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),u=read(),v=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
addedge(x,y);degree[y]++;
}
inv[]=;for (int i=;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
degree[v]++;
for (int i=;i<=n;i++) ans=1ll*ans*degree[i]%P;
if (v==) {cout<<ans;return ;}
topsort();f[u]=ans;
for (int i=n;i>=;i--)
{
for (int j=p[q[i]];j;j=edge[j].nxt) f[q[i]]=(f[q[i]]+f[edge[j].to])%P;
f[q[i]]=1ll*f[q[i]]*inv[degree[q[i]]]%P;
}
cout<<(ans-f[v]+P)%P;
return ;
}
BZOJ4011 HNOI2015落忆枫音(动态规划+拓扑排序)的更多相关文章
- BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...
- [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理
分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...
- 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp
题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...
- BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- [luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)
传送门 Description 给你一张 n 个点 m 条边的DAG,1 号节点没有入边.再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 . Input ...
- 【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)
原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j ...
- bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)
4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1125 Solved: 603[Submit][Statu ...
- BZOJ4011: [HNOI2015]落忆枫音
Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...
- [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]
Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...
随机推荐
- 北京Uber优步司机奖励政策(2月16日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 成都Uber优步司机奖励政策(3月2日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 【SQLSERVER】从数据库文件mdf中拆分ndf的方法和利弊
一.数据文件格式 SQLSERVER中,数据库的文件后缀有3种:mdf.ndf.ldf. 如下图所示,DW_TEST.mdf.DW_TEST_HIS.ndf.DW_TEST.ldf 属于同一个数据库T ...
- mysql数据库目录存放位置更改
http://haowen.blog.51cto.com/3486731/1274721 mysql数据库存储路径更改 使用了VPS一段时间之后发现磁盘空间快满了.本人的VPS在购买的时候买了500g ...
- android学习八 多用途碎片
碎片设计初衷:帮助开发人员管理应用程序功能. 特点:1.大量重用 2.可用性强 3.适应多种布局 碎片 1.包含一个视图层次结构和具有相应 ...
- Linker加载so失败问题分析
WeTest 导读 近期测试反馈一个问题,在旧版本微视基础上覆盖安装新版本的微视APP,首次打开拍摄页录制视频合成时高概率出现crash. 那么我们直奔主题,看看日志: 另外复现的日志中还出现如下信息 ...
- Python拼接字符串的7种方法
1.直接通过+操作: s = 'Python'+','+'你好'+'!'print(s) 打印结果: Python,你好! 2.通过join()方法拼接: 将列表转换成字符串 strlist=['Py ...
- 第四十篇 Python之设计模式总结-简单工厂、工厂方法、抽象工厂、单例模式
一. 简单工厂 简单工厂模式(Simple Factory Pattern):是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类. 简单工厂的用处不大,主要就是一个if... ...
- 安装mysql-5.7.12-winx64
之前安装mysql时未做总结,换新电脑,补上安装记录,安装的时候,找了些网友的安装记录,发现好多坑 1.mysql-5.7.12-winx64.zip下载 官方下载地址:http://dev.mysq ...
- 一篇文章让你了解GC垃圾回收器
简单了解GC垃圾回收器 了解GC之前我们首先要了解GC是要做什么的?顾名思义回收垃圾,什么是垃圾呢? GC回收的垃圾主要指的是回收堆内存中的垃圾对象. 从根对象出发,所有被引用的对象,都是存活对象 其 ...