~~~题面~~~

题解:

  首先我们要观察到一个性质,因为在固定的起始距离下,经过固定的操作,最后所在的位置是固定的,我们设经过操作1 ~ i之后所在的地方距离终点为d[i].

  那么如果女巫可以修改第i个操作,那么就相当于已经经过了1 ~ i - 1的操作,所以这个时候Alice已经在d[i - 1]的位置了,那么这个时候女巫可以通过修改s[i]来使得Alice和终点的距离减小,因为如果一个s[i]可以使得距离缩小,那么Alice一定会走,因此Alice的下一位置将是[0, d[i - 1]]中的任意位置。

  我们设f[i]表示最小的起始距离x使得经过i ~ n的操作无法到达终点。

  那么显然如果f[i + 1] <= d[i - 1],女巫就一定可以使得Alice无法到达终点。

  因此考虑如何转移。

  首先f[n + 1]表示不经过任何操作,那么这个时候的最小距离显然是1.

  考虑加入一个操作s[i]。

  1,如果当前在f[i + 1] 并且 s[i]这个操作不会被执行,那么s[i]就不会对f[i]造成影响,所以最近的距离还是f[i + 1]。

  那么什么时候s[i]不会被执行?显然s[i]需要 >= f[i  + 1]并使得s[i] - f[i + 1] >= f[i + 1],移项得到f[i + 1] <= s[i] / 2.

  2,如果这个操作被执行,那么将会缩短与目的地的距离,因为经过f[i + 1]的操作,最小的无法到达目的地的距离为f[i + 1],

  而原本在f[i + 1]的Alice经过s[i]这个操作缩短了与目的地的距离后,距离已经小于f[i + 1]了,因此这个时候肯定是可以到达目的地了。

  而为了使f[i]尽可能小,所以肯定要使得f[i]经过操作s[i]后到达f[i + 1],因为f[i + 1]是经过操作i + 1 ~ n最小的无法到达目的地的距离,不能再更小了。

  因此f[i] = f[i + 1] + s[i].

  

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 501000
#define LL long long int n, m;
int s[AC], d[AC], f[AC]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
n = read(), d[] = read();
for(R i = ; i <= n; i ++)
{
s[i] = read(), d[i] = d[i - ];
if(d[i] >= s[i]) d[i] -= s[i];
else if(s[i] - d[i] < d[i]) d[i] = s[i] - d[i];
}
} void work()//f[i]表示经过操作i ~ n,使得Alice无法到达终点的最小起始距离x
{
f[n + ] = ;
for(R i = n; i; i --)
if(f[i + ] <= s[i] / ) f[i] = f[i + ];
else f[i] = f[i + ] + s[i];
m = read();
for(R i = ; i <= m; i ++)
{
int x = read();
if(d[x - ] >= f[x + ]) printf("YES\n");
else printf("NO\n");
}
} int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return ;
}

ARC072E Alice in linear land的更多相关文章

  1. 【ARC072E】Alice in linear land DP

    题目大意 有一个人要去直线上\(lm\)远处的地方,他会依次给他的机器发出\(n\)个指令.第\(i\)个指令为\(d_i\).他的机器收到一个指令\(x\)后,如果向目的地方向前进\(xm\)后比当 ...

  2. 【ARC072E】Alice in linear land

    题目 瑟瑟发抖,这竟然只是个蓝题 题意大概就是初始在\(0\),要到坐标为\(D\)的地方去,有\(n\)条指令,第\(i\)条为\(d_i\).当收到一条指令\(x\)后,如果向\(D\)方向走\( ...

  3. 【arc072e】AtCoder Regular Contest 072 E - Alice in linear land

    题意 给定一个D,以及一个长度为N的序列a,顺序执行这些数字: 对于一个数字x,会使得D=min(D,abs(D-x)) 有Q次询问,每次询问独立,给出i,能否修改a[i],使得D最后不为0. n,q ...

  4. [AT2401] [arc072_e] Alice in linear land

    题目链接 AtCoder:https://arc072.contest.atcoder.jp/tasks/arc072_c 洛谷:https://www.luogu.org/problemnew/sh ...

  5. AtCoder Regular Contest 072 E:Alice in linear land

    题目传送门:https://arc072.contest.atcoder.jp/tasks/arc072_c 题目翻译 给你一个数组\(D\),然后给你一个操作序列\(d\),每次操作可以将\(D\) ...

  6. 【ARC072 E】Alice in linear land

    被智商题劝退,告辞 题意 有一个人在一条数轴的距离原点为 \(D\) 的位置,他可以执行 \(n\) 次操作,每次操作为给定一个整数 \(d_i\),这个人向原点的方向走 \(d_i\) 个单位,但如 ...

  7. Atcoder Regular Contest 072 C - Alice in linear land(思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 首先求出 \(s_i\) 表示经过 \(i\) 次操作后机器人会位于什么位置,显然 \(s_0=D\),\(s_i=\min(s_{i-1},| ...

  8. AT2401 [ARC072C] Alice in linear land

    基于观察,可以发现这样一条性质: 我们并不关心当前位置和终点的绝对关系,只在乎当前位置和终点的距离,当这个距离确定的时候接下来能走到的位置也是确定的. 基于这个观察可以发现,本质上每个位置的状态就是和 ...

  9. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

随机推荐

  1. hive读书笔记

    笔记来源<Hive编程指南> 一.hive命令行界面: ‘一次使用’命令:执行一个或多个(分号分隔)查询后hive CLI立即退出: hive -e "select * from ...

  2. 你的APK安全吗?来WeTest免费测!

    腾讯安全联合实验室就曾在<2018上半年互联网黑产研究报告>指出,移动端黑产规模宏大,恶意推广日均影响用户超过千万. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大 ...

  3. 一些窍门 drawable

    java.lang.Object       android.graphics.drawable.DrawableKnown Direct Subclasses   BitmapDrawable, C ...

  4. 02-JVM内存模型:虚拟机栈与本地方法栈

    一.虚拟机栈(VM Stack) 1.1)什么是虚拟机栈 虚拟机栈是用于描述java方法执行的内存模型. 每个java方法在执行时,会创建一个“栈帧(stack frame)”,栈帧的结构分为“局部变 ...

  5. java对象创建过程简介

    这是看书的记录,字有点丑啊还是将就搬上来 -.-,等把后面看了完善图

  6. 第二章 IP协议详解

    第二章 IP协议详解 2.1 IP服务的特点 它为上层协议提供了无状态,无连接,不可靠的服务 名称 简介 优点 缺点 对付缺点的方法 无状态 IP通信双方不同步传输数据的状态信息 无须为保持通信的状态 ...

  7. Unity编辑器 - DragAndDrop拖拽控件

    Unity编辑器 - DragAndDrop拖拽控件 Unity编辑器的拖拽(DragAndDrop)在网上能找到的资料少,自己稍微研究了一下,写了个相对完整的案例,效果如下 代码: object d ...

  8. Java并发基础--volatile关键字

    一.java内存模型 1.java内存模型 程序运行过程中的临时数据是存放在主存(物理内存)中,但是现代计算机CPU的运算能力和速度非常的高效,从内存中读取和写入数据的速度跟不上CPU的处理速度,在这 ...

  9. 5.安装hbase

    下载安装包并解压设置hbase环境变量配置hbase-site.xml启动hbase检测hbase启动情况测试hbase shell 下载安装包并解压 https://mirrors.tuna.tsi ...

  10. HDU 4308 Saving Princess claire_(简单BFS)

    求出不使用P点时起点到终点的最短距离,求出起点到所有P点的最短距离,求出终点到所有P点的最短距离. 答案=min( 不使用P点时起点到终点的最短距离, 起点到P的最短距离+终点到P的最短距离 ) #i ...