天啊我怎么这么蠢……写了一个树形dp,的确发现记录的很多值并没有什么用,然而当时脑子没转过弯来还是写了这个树形dp……虽然能A但就不解释了,总之是个垃圾算法(ー̀дー́)

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
#define mod 1000000007
#define int long long
int n, ans, rec, fa[maxn];
int g[maxn][], f[maxn][]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void Up(int &x, int y) { x = (x + y) % mod; }
int Inv(int x)
{
int base = , timer = mod - ;
for(; timer; timer >>= , x = x * x % mod)
if(timer & ) base = base * x % mod;
return base;
} void dfs(int u)
{
int t1 = , flag = ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue; fa[v] = u;
dfs(v); flag = ;
t1 = t1 * ((g[v][] + g[v][]) % mod) % mod;
}
if(flag) g[u][] = g[u][] = t1 % mod;
else g[u][] = , g[u][] = ;
} void dfs2(int u)
{
int t1 = f[fa[u]][] * g[fa[u]][] % mod * Inv(g[u][] + g[u][]) % mod;
int t2 = f[fa[u]][] * g[fa[u]][] % mod * Inv(g[u][] + g[u][]) % mod;
f[u][] = f[u][] = (t1 + t2) % mod; if(u == ) f[u][] = ; if(u == && rec != ) f[u][] = ;
Up(ans, (f[u][] * g[u][]) % mod * % mod);
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue;
dfs2(v);
}
} signed main()
{
n = read();
for(int i = ; i < n; i ++)
{
int x = read(), y = read();
E1.add(x, y); if(x == || y == ) rec ++;
}
dfs(); dfs2();
printf("%I64d\n", ans);
return ;
}

  其实我们可以直接推公式。我们注意到每个叶子结点完全可以决定从根到的路径上的节点是偶数个还是奇数个,也就是它本身是否建造赌场是一定的。至于剩下的节点,我们大可以随便决定。所以 \(ans = (n - x) * 2^{n - x} + x * 2 ^ {n - x + 1}\)。(其中 \(x\) 为叶子节点的个数)。那么整理一下就是 \(ans = (n + x) * 2 ^ {n - x}\)。

【题解】CF#852 E-Casinos and travel的更多相关文章

  1. CF 852E Casinos and travel

    题目链接 \(Desccription\) 给定一棵树,John从任意一个点开始,每次走向一个未到达过的点.每个点都可以有或没有赌场,每经过一个赌场心情都会反转,旅行开始前心情很好. 问有多少种方案使 ...

  2. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  3. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  4. 竞赛题解 - [CF 1080D]Olya and magical square

    Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...

  5. [CF852E]Casinos and travel(2019-11-15考试)

    题目大意 有一棵\(n\)个点的树,令\(f(u)\)表示给树黑白染色,满足以\(u\)为根的树中,每个叶子节点到根的路径上黑点数量为偶数的染色方案数,求\(\sum\limits_{u=1}^n f ...

  6. [题解] [CF 1250J] The Parade

    题面 题目大意: 给定一个 \(n\) , 所有军人的数量均在 \([1, n]\) 给定 \(a_i\) 代表高度为 \(i\) 的军人的个数 你要将这些军人分成 \(k\) 行, 满足下面两个条件 ...

  7. 题解 CF 1372 B

    题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...

  8. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T4(模拟)

    随便模拟下就过了qwq 然后忘了特判WA了QwQ #include <cstdio> #include <algorithm> #include <cstring> ...

  9. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T3(贪心)

    是一道水题 虽然看起来像是DP,但其实是贪心 扫一遍就A了 QwQ #include <cstdio> #include <algorithm> #include <cs ...

随机推荐

  1. iOS 中的正则表达式符号

    最近重新看了一遍 iOS 的正则文档,简单翻译下文档中涉及到的符号 1.正则表达式元字符 符号 说明 \a 响铃, \u0007 \A 匹配输入的开始,只匹配第一行,也就是忽略多行选项 \b 不在[] ...

  2. #define NULL ((void *)0)引起的风波

    1. 看下宏定义的结构体 typedef struct { ]; //CMEI/IMEI ]; //server ]; //CMEI/IMEI } Options; 2. 定义的NULL #defin ...

  3. Dota2一直 正在登录服务器的解决办法

    然后:1: c:\Windows\System32\drivers\etc\ 2:双击hosts文件,用记事本方式打开3:复制以下并粘贴至以记事本方式打开的hosts最后面111.221.33.253 ...

  4. 第三篇 JavaScript基础

    知识预览 BOM对象 DOM对象(DHTML) 实例练习 转:https://www.cnblogs.com/yuanchenqi/articles/5980312.html#_label2 一.Ja ...

  5. .NET MVC和.NET WEB api混用时注意事项

    1.同时配置了mvc路由和api路由时,mvc路由无法访问(调用所有mvc路由全部404错误) 在Global.asax中,需注意路由注册的顺序,将api路由注册放在最后: 即将 void Appli ...

  6. Unity Lighting - Choosing a Lighting Technique 选择照明技术(一)

      Choosing a Lighting Technique 选择照明技术 https://unity3d.com/cn/learn/tutorials/topics/graphics/choosi ...

  7. Micro:bit 硬件架构介绍

    Micro:bit做为当红的少儿编程工具,这两年在编程教育领域越来越火.今天就从硬件架构开始,分享Micro:bit的相关主题. Microbit 硬件设计是根据ARM mbed技术所开发的应用IC及 ...

  8. JVM学习--jvm监控和故障处理工具

    java虚拟机性能监控常用命令 Sun JDK监控和故障处理命令有jps.jstat.jinfo.jmap.jhat.jstack . 1.jps jps:JVM Process Status Too ...

  9. java扫描控制台输入

    由于因最近练习算法的需要,加上API文档中翻译的太过模糊,做了一些小测试,算是武断的记下一些个人结论. Scanner cin = new Scanner(System.in); 对于cin.next ...

  10. 【20180807模拟测试】T2 box

    [问题描述] 有个桌子长 R 宽 C,被分为 R*C 个小方格.其中,一些方格上有箱子,一些方格上有按 钮,一些方格上有障碍物,一些方格上是空地.现在有个任务,需要把所有箱子推到这些按 钮上面.箱子有 ...