[洛谷P1552][APIO2012]派遣
题目大意:有一棵$n$个点的树,和一个费用$m$,每个点有一个费用和价值,请选一个点,再从它的子树中选取若干个点,使得那个点的价值乘上选的点的个数最大,要求选的点费用总和小于等于$m$
题解:树形$dp$,贪心可得选的点一定是费用最少的几个点,可以用可并堆,大根堆,若总费用大于$m$就把堆顶弹掉,直到小于等于$m$,更新答案
卡点:无
C++ Code:
- #include <algorithm>
- #include <cstdio>
- #define maxn 100010
- int head[maxn], cnt;
- struct Edge {
- int to, nxt;
- } e[maxn];
- inline void addedge(int a, int b) {
- e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
- }
- long long ans;
- int V[maxn], lc[maxn], rc[maxn], dis[maxn];
- int sum[maxn], sz[maxn];
- inline int update(int x) {
- sz[x] = sz[lc[x]] + sz[rc[x]] + 1;
- sum[x] = sum[lc[x]] + sum[rc[x]] + V[x];
- return x;
- }
- int merge(int x, int y) {
- if (!x || !y) return x | y;
- if (V[x] < V[y]) std::swap(x, y);
- rc[x] = merge(rc[x], y);
- if (dis[rc[x]] > dis[lc[x]]) std::swap(lc[x], rc[x]);
- dis[x] = dis[rc[x]] + 1;
- return update(x);
- }
- inline int pop(int x) {return merge(lc[x], rc[x]);}
- int root, n, m;
- int L[maxn];
- int dfs(int u, int fa = 0) {
- int rt = u;
- for (int i = head[u]; i; i = e[i].nxt) {
- int v = e[i].to, __rt = dfs(v);
- rt = merge(rt, __rt);
- while (sum[rt] > m) rt = pop(rt);
- }
- ans = std::max(ans, static_cast<long long> (sz[rt]) * L[u]);
- return rt;
- }
- int main() {
- scanf("%d%d", &n, &m); dis[0] = -1;
- for (int i = 1, x; i <= n; i++) {
- scanf("%d%d%d", &x, V + i, L + i);
- sum[i] = V[i], sz[i] = 1;
- if (x) addedge(x, i);
- else root = i;
- }
- dfs(root);
- printf("%lld\n", ans);
- return 0;
- }
[洛谷P1552][APIO2012]派遣的更多相关文章
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- 2018.07.31洛谷P1552 [APIO2012]派遣(可并堆)
传送门 貌似是个可并堆的模板题,笔者懒得写左偏堆了,直接随机堆水过.实际上这题就是维护一个可合并的大根堆一直从叶子合并到根,如果堆中所有数的和超过了上限就一直弹直到所有数的和不超过上限为止,最后对于当 ...
- 洛谷P1552 [APIO2012]派遣(左偏树)
传送门 做这题的时候现学了一波左偏树2333(好吧其实是当初打完板子就给忘了) 不难发现肯定是选子树里权值最小的点且选得越多越好 但如果在每一个点维护一个小根堆,我们得一直找知道权值大于m为止,时间会 ...
- [洛谷P1552] [APIO2012]派遣(左偏树)
这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- [luogu P1552] [APIO2012]派遣
[luogu P1552] [APIO2012]派遣 题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除 ...
- [APIO2012]派遣 洛谷P1552 bzoj2809 codevs1763
http://www.codevs.cn/problem/1763/ https://www.lydsy.com/JudgeOnline/problem.php?id=2809 https://www ...
- 题解 洛谷 P1552 【[APIO2012]派遣】
根据题意,我们不难发现忍者之间的关系是树形结构. 发现答案的统计只是在该节点的子树中,因此我们考虑通过树形\(DP\)来解决问题. 从叶子节点开始,从下往上考虑,因为一个节点的最优答案只与他的领导力和 ...
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
随机推荐
- 阿里otter使用问题汇总
最近在使用otter做为和表从库.(100个分表太难查询了) user_00,user_01...user_99 => user_all 1.问题DDL语句不能执行(exception:setl ...
- 面试遇到的订单表sql的解决方案
对于以下需求:用户表:users (user_id int)订单表:order_tb(user_id int, or_time date, or_money double)求以下用户:一月下过单, ...
- 分享开源的GB/T-2260国家行政区划代码
项目中需要用到省市数据,在网上搜了一下,很多旧数据,稍微新一点的下载就要积分.X币什么的,很不爽,最后在GitHub上找到一个开源的,还有各种语言版本的,非常方便! https://github.co ...
- Qt 解析EXcel文件
写代码需要将excel中的文件导入到数据库中 网上找到以为大神写的,但是当初没有保存,也没有找到 我几乎是原分不动拔下来的,希望大神莫怪 void AddDialog::readExcel(QStri ...
- WEB安全基础之sql注入基础
1.基础sql语句 注释 单行注释# %23--+ --加空格多行注释/**/ SELECT(VERSION()) SELECT(USER()) SELECT(database()) 查数据库 SEL ...
- TPO-11 C1 Use the gym pass
TPO-11 C1 Use the gym pass 第 1 段 1.Listen to a conversation between a student and a university emplo ...
- 【form】 表单组件说明
form表单组件 1)将form组件内的用户输入的<switch/> <input/> <checkbox/> <slider/> <radio/ ...
- 树和二叉树 -数据结构(C语言实现)
读数据结构与算法分析 树的概念 一棵树是一些节点的集合,可以为空 由称做根(root)的节点以及0个或多个非空子树组成,子树都被一条来自根的有向边相连 树的实现 思路 孩子兄弟表示法:树中的每个节点中 ...
- 手动在Windows上创建kafka环境
一 主要内容请移步 参考文章 二 一点小问题 安装上面的参考文章完成配置,并且尝试传输消息后,我尝试去查看kafka的消息数据,目录是{logdir}/test-0/00000000000000.lo ...
- Keil sct分散加载文件
官方说明:http://www.keil.com/support/man/docs/armlink/armlink_pge1401393372646.htm