P3074 [USACO13FEB]牛奶调度Milk Scheduling
题目描述
Farmer John's N cows (1 <= N <= 10,000) are conveniently numbered 1..N. Each cow i takes T(i) units of time to milk. Unfortunately, some cows must be milked before others, owing to the layout of FJ's barn. If cow A must be milked before cow B, then FJ needs to completely finish milking A before he can start milking B.
In order to milk his cows as quickly as possible, FJ has hired a large number of farmhands to help with the task -- enough to milk any number of cows at the same time. However, even though cows can be milked at the same time, there is a limit to how quickly the entire process can proceed due to the constraints requiring certain cows to be milked before others. Please help FJ compute the minimum total time the milking process must take.
农民约翰有N头奶牛(1<=N<=10,000),编号为1...N。每一头奶牛需要T(i)单位的时间来挤奶。不幸的是,由于FJ的仓库布局,一些奶牛要在别的牛之前挤奶。比如说,如果奶牛A必须在奶牛B前挤奶,FJ就需要在给奶牛B挤奶前结束给奶牛A的挤奶。
为了尽量完成挤奶任务,FJ聘请了一大批雇工协助任务——同一时刻足够去给任意数量的奶牛挤奶。然而,尽管奶牛可以同时挤奶,但仍需要满足以上的挤奶先后顺序。请帮助FJ计算挤奶过程中的最小总时间。
输入输出格式
输入格式:
* Line 1: Two space-separated integers: N (the number of cows)
and M (the number of milking constraints; 1 <= M <= 50,000).
* Lines 2..1+N: Line i+1 contains the value of T(i) (1 <= T(i) <= 100,000).
* Lines 2+N..1+N+M: Each line contains two space-separated integers A
and B, indicating that cow A must be fully milked before one can start
milking cow B. These constraints will never form a cycle, so a solution
is always possible.
输出格式:
* Line 1: The minimum amount of time required to milk all cows.
输入输出样例
3 1
10
5
6
3 2
11
说明
There are 3 cows. The time required to milk each cow is 10, 5, and 6, respectively. Cow 3 must be fully milked before we can start milking cow 2.
Cows 1 and 3 can initially be milked at the same time. When cow 3 is finished with milking, cow 2 can then begin. All cows are finished milking after 11 units of time have elapsed.
Solution:
解释一手题意:本题就是一棵树(或者森林)中,从每个rd为0的点来走一条路径(需要时间),输出最长的时间。
本题描述中有一句话很重要(直接得出算法):"若b在a前面,则b必须先挤奶,再去给a挤奶"。
于是就有了上面的一句话题意,一个根节点要在它的多个儿子节点前被访问,然后找出它到各儿子节点的最长的时间,就是访问该树的最少时间。(画个图自己理解吧,语文太差,描述不好)
于是想到拓扑排序。于是直接统计入度,在拓扑排序时加两条语句维护每条路径的最长时间就OK了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=,M=;
int n,m,ans,t[N],a[N],cost[N],cnt,to[M],net[M],h[N],rd[N];
il void add(int x,int y)
{
to[++cnt]=y,net[cnt]=h[x],h[x]=cnt,rd[y]++;
}
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il void topsort()
{
queue<int>q;
for(int i=;i<=n;i++)
if(!rd[i])q.push(i);
while(!q.empty()){
int x=q.front();q.pop();
cost[x]=a[x]+t[x];
ans=max(ans,cost[x]);
for(int i=h[x];i;i=net[i]){
rd[to[i]]--;
a[to[i]]=max(a[to[i]],cost[x]);
if(!rd[to[i]])q.push(to[i]);
}
}
}
int main()
{
n=gi(),m=gi();
//cout<<n<<m<<endl;
for(int i=;i<=n;i++)t[i]=gi();
int u,v;
while(m--){
u=gi(),v=gi();
add(v,u);
}
topsort();
cout<<ans;
return ;
}
P3074 [USACO13FEB]牛奶调度Milk Scheduling的更多相关文章
- 洛谷P3093 [USACO13DEC]牛奶调度Milk Scheduling
题目描述 Farmer John has N cows that need to be milked (1 <= N <= 10,000), each of which takes onl ...
- [USACO13DEC]牛奶调度Milk Scheduling
原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=4096 容易想到的一个测略就是,优先考虑结束时间小的牛.所以我们对所有牛按照结束时间排序.然 ...
- [USACO09OPEN] 工作调度Work Scheduling (贪心/堆)
[USACO09OPEN] 工作调度Work Scheduling 题意翻译 约翰有太多的工作要做.为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间. 他的工作日从0时刻开始,有10^ ...
- P1208 [USACO1.3]混合牛奶 Mixing Milk
P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...
- [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns
洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...
- 洛谷——P1208 [USACO1.3]混合牛奶 Mixing Milk
P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...
- 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling
P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...
- 洛谷 P1208 [USACO1.3]混合牛奶 Mixing Milk
P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...
- 题解 P2949 【[USACO09OPEN]工作调度Work Scheduling】
P2949 [USACO09OPEN]工作调度Work Scheduling 题目标签是单调队列+dp,萌新太弱不会 明显的一道贪心题,考虑排序先做截止时间早的,但我们发现后面可能会出现价值更高却没有 ...
随机推荐
- 北京Uber优步司机奖励政策(1月27日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 成都Uber优步司机奖励政策(1月19日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Mybatis简单入门
前言 之前一直有直接使用Mybatis,但是没有细致的整理出来.长时间没有使用,细致的内容都忘记了.因此借此机会,从头开始整理,以后可以直接查看此次记录的内容. Mybatis的介绍 MyBatis是 ...
- HTML5心得
1. 在做登录或搜索框的时候,可以为input加上autofocus属性,这样打开页面焦点自动在登录框或搜索框中.减少用户不必要的定位点击. 如<label>Search:<inpu ...
- vs2015 mvc项目数据迁移报错
第一次做个mvc项目玩玩,然后需要数据迁移,也没做过,就百度找怎么数据迁移, 找到的方法是: 如果数据是在类库项目里就在‘程序包管理控制台’输入:enable-migrations -ContextT ...
- 请求头(request)和响应头(response)
说一说常见的请求头和相应头都有什么呢? 1)请求(客户端->服务端[request]) GET(请求的方式) /newcoder/hello.html(请求的目标资源) HTTP/1.1(请求采 ...
- Appium的环境搭建和配置
Appium的环境搭建和配置 一.安装Nodejs 下载nodejs安装包(https://nodejs.org/en/download/)安装 下载后,双击安装文件,按提示来安装. 测试安装是否成功 ...
- Java注解的基本原理
注解的本质就是一个继承了Annotation接口的接口,一个注解准确意义上来说,只不过是一种特殊注释而已,如果没有解析他的代码,他可能连注释都不如. 解析一个类或者方法的注解往往有两种形式,一种是编译 ...
- Python3 Tkinter-Button
1.绑定事件处理函数 from tkinter import * def hello(): print('Hello!') root=Tk() button=Button(root,text='cli ...
- selenium中的三种等待方式(显示等待WebDriverWait()、隐式等待implicitly()、强制等待sleep())---基于python
我们在实际使用selenium或者appium时,等待下个等待定位的元素出现,特别是web端加载的过程,都需要用到等待,而等待方式的设置是保证脚本稳定有效运行的一个非常重要的手段,在selenium中 ...