【机器学习基石笔记】七、vc Dimension
vc demension定义:
breakPoint - 1
N > vc dimension, 任意的N个,就不能任意划分
N <= vc dimension,存在N个,可以任意划分
只要vc dimension是finite,那么H就比较好。
Perceptron Learning Algo
多维度也行么?vc dimension是多少么?d维的, Dvc = d + 1
要证明!
Dvc >= d+1, 存在d+1个点,可以被shatter。
原点,加上每个分量为1, 加上常数项,矩阵可逆, 是否有w使得 sign(wx) = y,只要wx = y, x可逆,所以w存在。
Dvc <= d+1,任意d+2个点,不能被shatter。
多了一行,线性相关,有一个点是其他点的线性组合,假设可以shatter, ox均可以,但是如果每个都同号,最后一个一定>0,所以不能shatter。
vc dimension和自由度差不多。
Eout <= Ein + blahblah
blahblah就是模型复杂度, = Omega(N, H, delta)
随着vc dimension的增长,
Ein不断变小,model complexity不断增大,Eout一般先减小再增大。
一般来讲,N = 10倍的vc dimension就够用了,理论的vc bound简直太宽松了!
【机器学习基石笔记】七、vc Dimension的更多相关文章
- 【机器学习基石笔记】九、LinearRegression
[一] 线性回归直觉上的解释 得到Ein = mean(y - wx)^2 [二] w的推导 Ein = 1/N || xw - y||^2 连续.可微.凸函数 在各个方向的偏微分都是0 Ein = ...
- 机器学习基石笔记:07 The VC Dimension
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...
- 机器学习基石笔记:01 The Learning Problem
原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给 ...
- 机器学习基石笔记:04 Feasibility of Learning
原文地址:https://www.jianshu.com/p/f2f4d509060e 机器学习是设计算法\(A\),在假设集合\(H\)里,根据给定数据集\(D\),选出与实际模式\(f\)最为相近 ...
- 机器学习基石笔记:08 Noise and Error
噪声:误标.对同一数据点的标注不一致.数据点信息不准确...... 噪声是针对整个输入空间的. 存在噪声的情况下,VC bound依旧有用: 存在噪声,就是f------>p(y|x),f是p的 ...
- 机器学习基石笔记:13 Hazard of Overfitting
泛化能力差和过拟合: 引起过拟合的原因: 1)过度VC维(模型复杂度高)------确定性噪声: 2)随机噪声: 3)有限的样本数量N. 具体实验来看模型复杂度Qf/确定性噪声.随机噪声sigma2. ...
- 机器学习基石笔记:06 Theory of Generalization
若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...
- 机器学习基石笔记:14 Regularization
一.正则化的假设集合 通过从高次多项式的H退回到低次多项式的H来降低模型复杂度, 以降低过拟合的可能性, 如何退回? 通过加约束条件: 如果加了严格的约束条件, 没有必要从H10退回到H2, 直接使用 ...
- 林轩田机器学习基石笔记4—Feasibility of Learning
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Lear ...
随机推荐
- Oracle Shared Pool 原理
Oracle Shared Pool 原理 由于shared pool中最重要的是library cache,所以本文主要讲解Library cache的结构,library cache latch, ...
- PySpider HTTP 599: SSL certificate problem错误的解决方法(转)
前言 最近发现许多小伙伴在用 PySpider 爬取 https 开头的网站的时候遇到了 HTTP 599: SSL certificate problem: self signed certific ...
- 第一课Linux系统安装知识(1)
在做linux下C\C++开发,首先得安装个Linux系统,这节课记录相关系统安装的知识,本文记录虚拟机安装部分. 在linux系统中,现在一般生手都用桌面版,比如比较多人使用的是 ...
- linux 查看tomcat 日志
tomcat 重启: cd /opt/appserver/apache-tomcat-/bin ./shutdown.sh -ef|grep tomcat kill - ./startup.sh 查看 ...
- MAC mysql install
# linux 查看是否安装mysql rpm -qa |grep mysql yum 安装mysql yum -y install mysql-server 1 download ...
- Poj 1755Triathlon 未Ac,先mark
地址:http://poj.org/problem?id=1755 题目: Triathlon Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
- poj3903 Stock Exchange 二分+dp
题目地址:http://poj.org/problem?id=3903 题目: Description The world financial crisis is quite a subject. S ...
- What is CRC and how does it works?
What is CRC and how does it works? CRC errors refer to Layer 1 or 2 issues. Two things you should ch ...
- 20145235李涛《网络对抗》Exp5 MSF基础应用
基础问答 用自己的话解释什么是exploit,payload,encode? exploit:相当于搬运工,把攻击代码传送到靶机中. payload:相当于shellcode. encode:相当于包 ...
- Linux下使用USB模拟ACM串口设备【转】
本文转载自:https://www.cnblogs.com/pied/p/4549614.html 这个想法之前就在脑袋里有过,最近公司产品要用到,所以多做了些了解. 1. USB 简介 USB 是 ...