HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元
**题意:**有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种。如4个座位有3种做法。\\( 1≤N≤1000000000 (10^9) \\).
**题解:**首先考虑座位不相邻的选法问题,如果不考虑同构,可以发现其种数是一类斐波那契函数,只不过fib(1)是1 fib(2)是3。
由于n很大,所以使用矩阵快速幂来求fib。
再者考虑到旋转同构问题,枚举旋转**i (2π/n) **度,其等价类即\\( gcd(i, n) \\)种,那么可以得$$S(n)=\frac{1}{n}\sum_{d|n}^{n}{fib(gcd(d,n))}$$
这样枚举d即可,在此之上公式还可简化成 $$S(n)=\frac{1}{n}\sum_{d|n}^{n}{fib(d)\varphi(\frac{n}{d}) }$$
而枚举因子时,注意优化,得到因子i时可以顺带得到因子n/i,不然TLE...
最后使用EXGCD求1/n的乘法逆元。
还有需要考虑一个问题,当n=1时,答案是2,而fib(1)值为1,所以需要特判一下。
这道题综合的东西还蛮多的,刚好最近都在学这些,不错的题目/.
求欧拉函数时一个地方写错了查了好久T.T
/** @Date : 2016-11-12-19.18
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;
const LL mod = 1e9 + 7;
LL gcd(LL a, LL b)
{
return b?gcd(b, a % b):a;
}
LL exgcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if(a == 0 && b == 0)
return -1;
if(b == 0)
{
x = 1;
y = 0;
}
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
return d;
}
LL inv(LL a, LL b)
{
LL x, y;
LL d = exgcd(a, b, x, y);
if(d == 1)
return (x % b + b) % b;
else return -1;
}
struct matrix
{
LL mat[2][2];
void init()
{
mat[0][0] = mat[1][0] = mat[0][1] = mat[1][1] = 0;
}
};
matrix mul(matrix a, matrix b)
{
matrix c;
c.init();
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++)
{
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
c.mat[i][j] %= mod;
}
return c;
}
matrix fpow(matrix x, LL n)
{
matrix r;
r.init();
for(int i = 0; i < 2; i++)
r.mat[i][i] = 1;
while(n > 0)
{
if(n & 1)
r = mul(r, x);
x = mul(x, x);
n >>= 1;
}
return r;
}
LL phi(int x)
{
LL t = x;
LL ans = x;
for(int i = 2; i * i <= t; i++)
{
if(t % i == 0)
{
ans = ans / i * (i - 1);
while(t % i == 0)
{
t /= i;
}
}
}
if(t > 1)
ans = ans/t * (t-1);
return ans;
}
LL fib(int x)
{
matrix t;
t.init();
t.mat[0][0] = 1;
t.mat[0][1] = 1;
t.mat[1][0] = 1;
matrix a;
a = fpow(t, x-1);
LL ans = a.mat[1][0] * 3 + a.mat[1][1];
return ans % mod;
}
int main()
{
LL n; while(~scanf("%lld", &n))
{
LL ans = 0;
for(int i = 1; i * i <= n; i++)//枚举因子优化
{
if(n % i == 0)
{
ans = (ans + phi(n/i)*fib(i)) % mod;
if(n / i != i)
{
ans = (ans + phi(i)*fib(n/i)) % mod;
}
}
}
ans = ans * inv(n, mod) % mod;
if(n == 1)
printf("2\n");
else
printf("%lld\n", ans);
}
return 0;
}
HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元的更多相关文章
- HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...
- HDU 5868 Different Circle Permutation
公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...
- (hdu 6030) Happy Necklace 找规律+矩阵快速幂
题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6030 Problem Description Little Q wants to buy a nec ...
- HDU 1757 A Simple Math Problem(矩阵快速幂)
题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!
http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE, 更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...
- hdu 4291 2012成都赛区网络赛 矩阵快速幂 ***
分析:假设g(g(g(n)))=g(x),x可能非常大,但是由于mod 10^9+7,所以可以求出x的循环节 求出x的循环节后,假设g(g(g(n)))=g(x)=g(g(y)),即x=g(y),y也 ...
- hdu 1757 A Simple Math Problem (矩阵快速幂,简单)
题目 也是和LightOJ 1096 和LightOJ 1065 差不多的简单题目. #include<stdio.h> #include<string.h> #include ...
- 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)
题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...
随机推荐
- vue.js学习之 如何在手机上查看vue-cli构建的项目
vue.js学习之 如何在手机上查看vue-cli构建的项目 一:找到config文件夹下的index.js文件,打开后,将host的值改为你本地的ip,保存后重启项目 二:输入ip和端口号打开项目 ...
- Python学习 - 入门篇1
前言 学习渠道:慕课网:Python入门 记录原因:人总归要向记忆低头[微笑再见.gif] 记录目标:形成简洁的知识点查阅手册 变量和数据类型 变量 赋值 在Python中,可以把任意数据类型赋值给变 ...
- js中斜杠转义
js中“/”不需要转义. if(myPath.indexOf("/Upload/EmailFile/")!=-1){ alert("有附件!")}
- iOS开发应用程序更新
#import "ViewController.h" //1一定要先配置自己项目在商店的APPID,配置完最好在真机上运行才能看到完全效果哦 #define STOREAPPID ...
- Token安全
token相对安全加密算法 http://blog.csdn.net/q8649912/article/details/52370565 关于文章的理解 1 sessionid 这个名词应该理解为:一 ...
- Jmeter系列-webdriver代码范例
范例 WDS.sampleResult.sampleStart() try{ //打开博客首页 WDS.browser.get('http://xqtesting.blog.51cto.com') / ...
- PHPCMS登录后不是进入会员中心而是转入登录前页最新代码
phpcms比如会员在登录前是停留在下载页面的,但是下载页面是要求会员登录后才能下载,所以会员就有这个登陆过程,但是一般的会员系统是登录进会员中心的,就会有点体验不好 这里教大家修改下 能达到登录后 ...
- parse_str — 将字符串解析成多个变量
$arr2="first=value1&second=value2&third[]=value3&third[]=value4"; parse_str($a ...
- Matlab画平滑曲线的两种方法
自然状态下,用plot画的是折线,而不是平滑曲线. 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值.下面是源程序,大家可以根据需要自行选择,更改拟合的参 ...
- android异常Unable to instantiate activity ComponentInfo解决方法
我是下面提到的第四条: 在Order and Export 中 把新加的 android-support-v4.jar的前面的对号打上勾 保存:就可以了: 做android开发的可能都碰到" ...