读书笔记:Ross:概率模型导论:方差和协方差
例2.34 考虑N个人,一些人赞同某个提议,另一些人反对。假定Np个人赞同,N-Np人反对,p未知。现在想要通过随机选取n个人调查他们的态度,并由此来估计总体中赞同这个提议的人员比例p。
设Xi=1表示第i个选到的人赞同。用被取样部分中赞同这个提议的比率作为p的估计,即ΣXi/n,i=[1..n]。
现在我们要求这个估计的方差。先求Var(ΣXi):
Var(ΣXi)=ΣVar(ΣXi)+2ΣΣCov(Xi, Xj)
初看起来和式的第二项貌似多余:每个人的意见不是应该独立的吗?
嗯,每个人的意见确实是“独立”的没错,但“意见上的独立”和统计试验意义上的“独立”完全是两码事。如下:
设事件E1表示抽出的第一个人赞同,事件E2表示抽出的第二个人赞同,
P(E1E2)=P(E2|E1)P(E1),
P(E1)=p, P(E2|E1)=(Np-1)/(N-1), // 第二次抽取时,总人数N-1,赞同人数Np-1。
P(E1)=P(E2)=p,
P(E1E2)!=P(E1)P(E2)。
关键是,P(E2)!=P(E2|E1)。
次序统计量
Xi小于等于x当且仅当X1,...Xn至少有i个小于或等于x。
初看起来不太好理解,上图。
X1 X2 ... Xi-2 Xi-1 Xi Xi+1 Xi+2 ... Xn
----------------------------------x----------->
|
x在这里
如上图是Xi小于x的情况,共有i+2个小于等于x。
读书笔记:Ross:概率模型导论:方差和协方差的更多相关文章
- [spark 快速大数据分析读书笔记] 第一章 导论
[序言] Spark 基于内存的基本类型 (primitive)为一些应用程序带来了 100 倍的性能提升.Spark 允许用户程序将数据加载到 集群内存中用于反复查询,非常适用于大数据和机器学习. ...
- <Java编程思想>读书笔记(1)-对象导论、一切都是对象
1.面向对象编程:OOP (Object-oriented Programming) 2.Alan Kay 总结的面向对象语言5个基本特性: 1) 万物皆为对象 2) 程序是对象的集合,他们通过发送消 ...
- Thinking In Java读书笔记--对象导论
Thinking In Java读书笔记--对象导论[对象]服务提供者==>将对象看做一个服务提供者[程序员分类][类创造者]/[客户端程序员] [访问控制存在的原因?][1]客户端程序员无法触 ...
- 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 《Linux/Unix系统编程手册》读书笔记8 (文件I/O缓冲)
<Linux/Unix系统编程手册>读书笔记 目录 第13章 这章主要将了关于文件I/O的缓冲. 系统I/O调用(即内核)和C语言标准库I/O函数(即stdio函数)在对磁盘进行操作的时候 ...
- 强化学习读书笔记 - 02 - 多臂老O虎O机问题
# 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...
- 游戏人工智能 读书笔记 (四) AI算法简介——Ad-Hoc 行为编程
本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games ...
随机推荐
- Linux上的free命令学习
Linux新手,今天使用了free命令来查看电脑内存的使用情况.如下:-m表示以M来显示. 1.基本信息介绍 (1)其中纵向信息: Mem:表示物理内存大小 -/+ buffers/cached:表示 ...
- 腾讯优测干货精选| 安卓开发新技能Get -常用必备小工具汇总
文/腾讯公司 陈江峰 优测小优有话说: 移动研发及测试干货哪里找?腾讯优测-优社区你值得拥有~ 开发同学们都知道,安卓开发路上会碰到很多艰难险阻,一不小心就被KO.这时候,没有新技能傍身怎么行?今天我 ...
- 传统解析xml的方式
1. 介绍 1)DOM(JAXP Crimson解析器) DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信息片断的集合.这个层次结构允 ...
- POJ-1155 TELE (树形DP+分组背包)
题目大意:给一棵带边权的有根树,每个叶子节点有权.边权表示代价,叶子节点的权值代表可以补偿多少代价.问从根节点最多可以到达多少个叶子,使得付出的总代价不大于0. 题目分析:定义状态dp(u,k)表示从 ...
- Android 编程下去除 ListView 上下边界蓝色或黄色阴影
默认的情况下,在 ListView 滑动到顶部或者是底部的时候,会有黄色或者蓝色的阴影出现.在不同的版本上解决的方法是不同的,在 2.3 版本之前可以在 ListView 的属性中通过设置 andro ...
- windows7旗舰版激活密钥永久版免费分享
windows7之家不仅提供精品Win7教程 给大家,加上这个windows7激活密匙还帮大家解决windows7系统激活问题,包括win7旗舰版 windows7安装版这些. 用的是Windows7 ...
- Python内部类型
Python使用对象模型来存储数据 . 身份:每个对象都有一个唯一的身份标识自己,任何对象的身份否可以使用内建函数id()来得到.这个值可以被认为是该对象的内存地址 . 类型:对象的类型决定了该对 ...
- C7 连接电脑问题解决
http://bbs.anzhuo.cn/thread-1254845-1-1.html
- Zend 安装 OpenExplorer插件
转自:http://blog.csdn.net/binyao02123202/article/details/8954249 OpenExplorer是一款打开导进来的项目文件或文件夹所在磁盘的位置的 ...
- 使用prototype 对象定义类成员
使用prototype 对象定义类成员上一节介绍了类的实现机制以及构造函数的实现,现在介绍另一种为类添加成员的机制:prototype 对象.当new 一个function 时,该对象的成员将自动赋给 ...