裸的费用流啊。。。

建图:对于一个点p拆成两个p1和p2,S向p1连边,流量为1,费用为0;p2向T连边流量为1,费用为0

然后i1向a2到b2分别连边,不妨设i1向p2连边,流量为1,费用为|i - p| * ki

跑一下费用流,如果流量不为n,NIE!然后答案就是费用之和。。。

 /**************************************************************
Problem: 1520
User: rausen
Language: C++
Result: Accepted
Time:1296 ms
Memory:2380 kb
****************************************************************/ #include <cstdio>
#include <algorithm> using namespace std;
const int N = ;
const int M = 1e5 + ;
const int inf = 1e9; struct edges {
int next, to, f, cost;
edges() {}
edges(int _n, int _t, int _f, int _c) : next(_n), to(_t), f(_f), cost(_c) {}
} e[M]; int n, S, T;
int first[N], tot = ;
int q[N], d[N], g[N];
bool v[N]; inline int read() {
int x = , sgn = ;
char ch = getchar();
while (ch < '' || '' < ch) {
if (ch == '-') sgn = -;
ch = getchar();
}
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return sgn * x;
} inline void Add_Edges(int x, int y, int f, int c) {
e[++tot] = edges(first[x], y, f, c), first[x] = tot;
e[++tot] = edges(first[y], x, , -c), first[y] = tot;
} inline int calc() {
int flow = inf, x;
for (x = g[T]; x; x = g[e[x ^ ].to])
flow = min(flow, e[x].f);
for (x = g[T]; x; x = g[e[x ^ ].to])
e[x].f -= flow, e[x ^ ].f += flow;
return flow;
} #define y e[x].to
bool spfa() {
int x, now, l, r;
for (x = ; x <= T; ++x)
d[x] = inf;
d[S] = , v[S] = , q[] = S;
for(l = r = ; l != (r + ) % N; ) {
now = q[l], ++l %= N;
for (x = first[now]; x; x = e[x].next) {
if (d[now] + e[x].cost < d[y] && e[x].f) {
d[y] = d[now] + e[x].cost, g[y] = x;
if (!v[y]) {
v[y] = ;
if (d[y] < d[q[l]])
q[(l += N - ) %= N] = y;
else q[++r %= N] = y;
}
}
}
v[now] = ;
}
return d[T] != inf;
}
#undef y inline int work() {
static int res, tot;
res = , tot = ;
while (spfa()) {
tot += calc();
res += d[T];
}
if (tot == n) printf("%d\n", res);
else puts("NIE");
} int main() {
int i, j, a, b, k, m;
n = read(), S = * n + , T = S + ;
for (i = ; i <= n; ++i)
Add_Edges(S, i, , ), Add_Edges(i + n, T, , );
for (i = ; i <= n; ++i) {
m = read(), a = read(), b = read(), k = read();
for (j = a; j <= b; ++j)
Add_Edges(i, n + j, , abs((j - m) * k));
}
work();
return ;
}

BZOJ1520 [POI2006]Szk-Schools的更多相关文章

  1. 【费用流】bzoj1520 [POI2006]Szk-Schools

    注意:建图的时候,一定要把旧标号相同的分开. #include<cstdio> #include<algorithm> #include<cstring> #inc ...

  2. 【BZOJ1520】[POI2006]Szk-Schools KM算法

    [BZOJ1520][POI2006]Szk-Schools Description Input Output 如果有可行解, 输出最小代价,否则输出NIE. Sample Input 5 1 1 2 ...

  3. 【bzoj1520】[POI2006]Szk-Schools 费用流

    题目描述 输入 输出 如果有可行解, 输出最小代价,否则输出NIE. 样例输入 5 1 1 2 3 1 1 5 1 3 2 5 5 4 1 5 10 3 3 3 1 样例输出 9 题解 费用流 设xi ...

  4. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  5. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  6. Network of Schools --POJ1236 Tarjan

    Network of Schools Time Limit: 1000MS Memory Limit: 10000K Description A number of schools are conne ...

  7. BZOJ 1121: [POI2008]激光发射器SZK

    1121: [POI2008]激光发射器SZK Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 792  Solved: 653[Submit][Sta ...

  8. 【BZOJ-1121】激光发射器SZK 物理 + 数学 + 乱搞

    1121: [POI2008]激光发射器SZK Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 682  Solved: 565[Submit][Sta ...

  9. POJ 1236 Network of Schools(强连通分量/Tarjan缩点)

    传送门 Description A number of schools are connected to a computer network. Agreements have been develo ...

随机推荐

  1. hnoi 2016 省选总结

    感觉省选好难的说...反正我数据结构太垃圾正解想到了也打不出来打一打暴力就滚粗了! DAY1 0+20+30 DAY2 60-20+0+60 最后170-20分,暴力分还是没有拿全! 然而这次是给了5 ...

  2. Spring管理bean的生命周期

    1: bean的创建:   如果我们默认的scope配置为Singleton的话, bean的创建实在Spring容器创建的时候创建: 如果scope的配置为Prototype的话,bena的创建是在 ...

  3. Scrum Meeting---Nine(2015-11-4)

    今日已完成任务和明日要做的任务 姓名 今日已完成任务 今日时间 明日计划完成任务 估计用时 董元财 首页设计 3h 首页设计 3h 胡亚坤 好友聊天 2h 分类顶栏设计 2h 刘猛 好友搜索 2h 个 ...

  4. SAS Annotated Output GLM

    SAS Annotated Output GLM   在使用SAS过程中,proc glm步输出离差平方和有4种算法,分别是SS1 SS2 SS3 SS4 下面文章介绍了其中SS3的具体计算步骤和例子 ...

  5. aop前传之代理

    一.jdk提供proxy类对目标对象实现代理,简单的说对方法的调用交给代理对象来操作. 代理目标 代理的具体实现: 代理测试; 简单说:利用proxy生成一个委托类实现代理.这个委托类是目标类的接口的 ...

  6. 控制执行流程 Thinking in Java 第四章

    4.1 true 和 false *Java 不允许将一个数字作为布尔类型(虽然在C和C++中可以),使用时需要条件表达式将其转换为布尔类型: 如下: if( a!= 0) 4.2 if-else 4 ...

  7. Android网络编程系列 一 JavaSecurity之JSSE(SSL/TLS)

    摘要:     Java Security在Java存在已久了而且它是一个非常重要且独立的版块,包含了很多的知识点,常见的有MD5,DigitalSignature等,而Android在Java Se ...

  8. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  9. Android软键盘弹出时把布局顶上去的解决方法

    原文: 解决Andriod软键盘出现把原来的布局给顶上去的方法(转) 链接:http://blog.sina.com.cn/s/blog_9564cb6e0101g2eb.html 决方法,在main ...

  10. mysql 命令行快速导出数据,导入数据

    如果数据有20几万以上的时候,下面的方法很实用 导出数据 1.into outfile select * from table into outfile 'C:/a.sql'; 2.mysqldump ...