前言:对于二次排序相信大家也是似懂非懂,我也是一样,对其中的很多方法都不理解诶,所有只有暂时放在一边,当你接触到其他的函数,你知道的越多时你对二次排序的理解也就更深入了,同时建议大家对wordcount的流程好好分析一下,要真正的知道每一步都是干什么的。

1.Partitioner分区类的作用是什么?
2.getPartition()三个参数分别是什么?
3.numReduceTasks指的是设置的Reducer任务数量,默认值是是多少?
扩展:
如果不同类型的数据被分配到了同一个分区,输出的数据是否还是有序的?

在进行MapReduce计算时,有时候需要把最终的输出数据分到不
同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中;按照性别划分的话,需要把同一性别的数据放到一个文件中。我们知道最终的输出数
据是来自于Reducer任务。那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行。Reducer任务的数据来自于Mapper任
务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行。Mapper任务划分数据的过程就称作Partition。
负责实现划分数据的类称作Partitioner。

Partitoner类的源码如下:


package org.apache.hadoop.mapreduce.lib.partition;

import org.apache.hadoop.mapreduce.Partitioner;

/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> { /** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
//默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
} }

HashPartitioner是处理Mapper任务输出 的,getPartition()方法有三个形参,源码中key、value分别指的是Mapper任务的输出,numReduceTasks指的是设置 的Reducer任务数量,默认值是1。那么任何整数与1相除的余数肯定是0。也就是说getPartition(…)方法的返回值总是0。也就是 Mapper任务的输出总是送给一个Reducer任务,最终只能输出到一个文件中。

据此分析,如果想要最终输出到多个文件中,在Mapper任务中对数据应该划分到多个区中。那么,我们只需要按照一定的规则让getPartition(…)方法的返回值是0,1,2,3…即可。

大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。

河南省;1
河南;2
中国;3
中国人;4
大;1
小;3
中;11

这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个 分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash 码来分区。核心代码如下:

   public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */ String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}

在运行Mapreduce程序时,只需在主函数里加入如下两行代码即可:

job.setPartitionerClass(PPartition.class);
job.setNumReduceTasks(3);//设置为3

MapReduce框架Partitioner分区方法的更多相关文章

  1. MapReduce教程(二)MapReduce框架Partitioner分区<转>

    1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放 ...

  2. hadoop 学习笔记:mapreduce框架详解

    开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

  3. Hadoop学习笔记:MapReduce框架详解

    开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

  4. 提升资源利用率的MapReduce框架

    Hadoop系统提供了MapReduce计算框架的开源实现,像Yahoo!.Facebook.淘宝.中移动.百度.腾讯等公司都在借助 Hadoop进行海量数据处理.Hadoop系统性能不仅取决于任务调 ...

  5. mapreduce框架详解【转载】

    [本文转载自:http://www.cnblogs.com/sharpxiajun/p/3151395.html] 开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoo ...

  6. mapreduce框架详解

    hadoop 学习笔记:mapreduce框架详解 开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感 ...

  7. 【Big Data - Hadoop - MapReduce】hadoop 学习笔记:MapReduce框架详解

    开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

  8. Hadoop 新 MapReduce 框架 Yarn 详解【转】

    [转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/] 简介: 本文介绍了 Hadoop 自 0.23.0 版本 ...

  9. Hadoop 之 MapReduce 框架演变详解

    经典版的MapReduce 所谓的经典版本的MapReduce框架,也是Hadoop第一版成熟的商用框架,简单易用是它的特点,来看一幅图架构图: 上面的这幅图我们暂且可以称谓Hadoop的V1.0版本 ...

随机推荐

  1. log4j 的rootLogger与rootCategory的区别

    一句话 rootLogger是新的使用名称,对应Logger类 rootCategory是旧的使用名称,对应原来的Category类 Logger类是Category类的子类,所以,rootCateg ...

  2. sikuli+java实例

      新建java工程,导入sikuli-script.jar包 public class TestSikuli { public static void openPage() throws FindF ...

  3. java中的xml与实体类之间的映射

    实体类: package xml; import javax.xml.bind.annotation.XmlRootElement; @XmlRootElement public class User ...

  4. 批处理操作mysql数据库

    批处理操作mysql数据库 1.使用批处理自动登录mysql数据库 @echo offcd C:\program files\mysql\mysql server 5.5\binmysql -u ro ...

  5. mysql设置定时任务

    –查看时间调度器是否开启 SHOW VARIABLES LIKE 'event_scheduler'; SELECT @@event_scheduler; –开启时间调度器 SET GLOBAL ev ...

  6. The Ninth Hunan Collegiate Programming Contest (2013) Problem C

    Problem C Character Recognition? Write a program that recognizes characters. Don't worry, because yo ...

  7. 游戏设计模式系列(一)—— 单线逻辑&&数据驱动,搞定最容易卡死的结算界面

    从事游戏行业1年多了,个中心酸不知从何说起.抛开非技术的不说,一个开发者需要面对的最大问题,可能就是和策划频繁改变的需求做斗争了吧,这时候就体现了设计模式的重要性,抛开正式的设计方式不说,先讲讲我1年 ...

  8. 初学cocos2dx-3.x之使用Scale9Sprite时的配置问题

    今天学习的时候遇到了Scale9Sprite————一张可拉伸的精灵,只要给它设置一下大小,它就会自动拉伸. Scale9Sprite* nineGirl = Scale9Sprite::create ...

  9. Jackson 框架,轻易转换JSON(转)

    Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 相比json-lib框架,Jackson所依赖的jar包较少,简单易用并且性能也 ...

  10. notepad++ tab键用空格缩进

    从工作那天开始到现在,写python代码一直用notepad++来写,尝试几次都改不回eclipse.o(╯□╰)o python脚本中,如果用制表符缩进,经常会报错,必须改用空格缩进代替. 之前设置 ...