【HDOJ】【2829】Lawrence
DP/四边形不等式
做过POJ 1739 邮局那道题后就很容易写出动规方程:
dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价)
$w(l,r)=\sum_{i=l}^{r}\sum_{j=i+1}^{r}a[i]*a[j]$
那么就有 $w(l,r+1)=w(l,r)+a[j]*\sum\limits_{i=l}^{r}a[i]$
所以:w[i][j]明显满足 关于区间包含的单调性
然后我们大胆猜想,小(bu)心(yong)证明,w[i][j]满足四边形不等式,所以这题就跟邮局那题一样了……
咳咳好吧作为一个有节操的人,我还是尝试着证明了一下(结果发现用来证明的时间比我写代码的时间要长……)
先把w(i,j)的定义搬下来:\[ w(l,r)=\sum\limits_{i=l}^{r}\sum\limits_{j=i+1}^{r}a[i]*a[j] \]
形象一点来说就是:
对于$ i\leq i' < j \leq j' $
中间的都是要算两次,剩下的部分:
(左)表示w(i,i'-1),[左]表示 $\sum_{k=i}^{i'-1}a[k] $
(中)表示w(i',j),[中]表示 $\sum_{k=i'}^j a[k] $
(右)表示w(j+1,j'),[右]表示 $\sum_{k=j+1}^{j'} a[k] $
\[ w(i,j)+w(i',j')=(左)+[左]*[中]+(右)+[右]*[中]+(中) \\ w(i,j')+w(i',j)=(左+右)+[左+右]*[中]+(中) \]
其中\[ [左+右]*[中]=[左]*[中]+[右]*[中] \]
但\[ (左+右)=(左)+(右)+[左]*[右] \]
所以\[ (左+右)>(左)+(右) \]
所以\[w(i,j)+w(i',j') \leq w(i,j')+w(i',j) \]
//HDOJ 2829
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,INF=~0u>>;
const double eps=1e-;
#define debug
/*******************template********************/
int dp[N][N],s[N][N],w[N][N],b[N],a[N],n,m; int main(){
while(scanf("%d%d",&n,&m)!=EOF && n){
m++;
F(i,,n) a[i]=getint();
F(i,,n){
b[i]=a[i];
w[i][i]=;
F(j,i+,n){
w[i][j]=w[i][j-]+a[j]*b[i];
b[i]+=a[j];
}
}
F(i,,n) F(j,,m) dp[j][i]=INF;
F(i,,n){
dp[][i]=w[][i];
s[][i]=;
}
F(i,,m){
s[i][n+]=n;
D(j,n,i)
F(k,s[i-][j],s[i][j+])
if(dp[i-][k]+w[k+][j]<dp[i][j]){
s[i][j]=k;
dp[i][j]=dp[i-][k]+w[k+][j];
}
}
printf("%d\n",dp[m][n]);
}
return ;
}
Lawrence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2448 Accepted Submission(s): 1093
E. Lawrence was a controversial figure during World War I. He was a
British officer who served in the Arabian theater and led a group of
Arab nationals in guerilla strikes against the Ottoman Empire. His
primary targets were the railroads. A highly fictionalized version of
his exploits was presented in the blockbuster movie, "Lawrence of
Arabia".
You are to write a program to help Lawrence figure out
how to best use his limited resources. You have some information from
British Intelligence. First, the rail line is completely linear---there
are no branches, no spurs. Next, British Intelligence has assigned a
Strategic Importance to each depot---an integer from 1 to 100. A depot
is of no use on its own, it only has value if it is connected to other
depots. The Strategic Value of the entire railroad is calculated by
adding up the products of the Strategic Values for every pair of depots
that are connected, directly or indirectly, by the rail line. Consider
this railroad:
Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.
Now,
suppose that Lawrence only has enough resources for one attack. He
cannot attack the depots themselves---they are too well defended. He
must attack the rail line between depots, in the middle of the desert.
Consider what would happen if Lawrence attacked this rail line right in
the middle:
The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots:
The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.
Given
a description of a railroad and the number of attacks that Lawrence can
perform, figure out the smallest Strategic Value that he can achieve
for that railroad.
will be several data sets. Each data set will begin with a line with
two integers, n and m. n is the number of depots on the railroad
(1≤n≤1000), and m is the number of attacks Lawrence has resources for
(0≤m<n). On the next line will be n integers, each from 1 to 100,
indicating the Strategic Value of each depot in order. End of input will
be marked by a line with n=0 and m=0, which should not be processed.
each data set, output a single integer, indicating the smallest
Strategic Value for the railroad that Lawrence can achieve with his
attacks. Output each integer in its own line.
4 5 1 2
4 2
4 5 1 2
0 0
2
【HDOJ】【2829】Lawrence的更多相关文章
- 【HDOJ图论题集】【转】
=============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...
- 【集训笔记】博弈论相关知识【HDOJ 1850【HDOJ2147
以下资料来自:http://blog.csdn.net/Dinosoft/article/details/6795700 http://qianmacao.blog.163.com/blog/stat ...
- 【HDOJ 5379】 Mahjong tree
[HDOJ 5379] Mahjong tree 往一颗树上标号 要求同一父亲节点的节点们标号连续 同一子树的节点们标号连续 问一共同拥有几种标法 画了一画 发现标号有二叉树的感觉 初始标号1~n 根 ...
- HDOJ 1238 Substrings 【最长公共子串】
HDOJ 1238 Substrings [最长公共子串] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】
HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...
- HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- 【HDOJ 2089】不要62
[HDOJ 2089]不要62 第一个数位dp的题 做的老困难了...只是好歹是做出来了 迈出了第一步.. 对大牛来说这样的题都是小case ps:新上一个记忆化方法 一些绕弯的题里用dfs好想些 代 ...
- 【HDOJ 5371】 Hotaru's problem
[HDOJ 5371] Hotaru's problem Manacher算法+穷举/set Manacher算法一好文:http://blog.csdn.net/yzl_rex/article/de ...
- 【HDOJ 5654】 xiaoxin and his watermelon candy(离线+树状数组)
pid=5654">[HDOJ 5654] xiaoxin and his watermelon candy(离线+树状数组) xiaoxin and his watermelon c ...
- 【HDOJ 5399】Too Simple
pid=5399">[HDOJ 5399]Too Simple 函数映射问题 给出m函数 里面有0~m个函数未知(-1) 问要求最后1~n分别相应仍映射1~n 有几种函数写法(已给定的 ...
随机推荐
- 选择两个字段时distinct位置的影响
当选择两个字段时,例如:"select XX1, XX2 from tb; ",那么将distinct放在前一个字段XX1之前和放在后一个字段XX2之前,结果有什么不同呢? 先说结 ...
- Flex 4.0及4.6发布的网络应用在内网内会访问很慢的解决方案
Flex 4.x 开发的程序部署在外网在能访问到www.adobe.com的时能够很快加载完成,但是部署在本地局域网,不能访问外网的服务器上,用浏览器访问应用需要加载几分钟的时间,这种等待时间客户几乎 ...
- ios category
https://github.com/shaojiankui/IOS-Categories
- 【笔记】WPF实现ViewPager引导界面效果及问题汇总
最近在开发项目的首次使用引导界面时,遇到了问题,引导界面类似于安卓手机ViewPager那样的效果,希望通过左右滑动手指来实现切换不同页面,其间伴随动画. 实现思路: 1.界面布局:新建一个UserC ...
- Linq操作
Linq使用Group By 1 1.简单形式: var q = from p in db.Products group p by p.CategoryID into g select g; 语句描述 ...
- properties文件
properties文件也叫资源文件,以键值对的形式存放文本内容.一个properties对象代表一个资源文件 步骤:1.生成properties对象2.生成InputStream/Reader来读取 ...
- [转]从普通DLL中导出C++类 – dllexport和dllimport的使用方法(中英对照、附注解)
这几天写几个小程序练手,在准备将一个类导出时,发现还真不知道如果不用MFC的扩展DLL,是怎么导出的.但我知道dllexport可以导出函数和变量,而且MFC扩展DLL就算是使用了MFC的功能,但 ...
- Python sequence (序列)
序列简介 sequence 是一组有序元素的组合 序列可以是多个元素,也可以一个元素都没有 序列有2种:tuple(定值表).List(表) D:\python\Python_Day>pytho ...
- 'mysql.column_stats' doesn't exist and Table 'mysql.index_stats' doesn't exist
在生产库MariabDB中修改字段类型,提示如下错误:Table 'mysql.column_stats' doesn't existTable 'mysql.index_stats' doesn' ...
- android开发系列之socket编程
上周在项目遇到一个接口需求就是通讯系列必须是socket,所以在这篇博客里面我想谈谈自己在socket编程的时候遇到的一些问题. 其实在android里面实现一个socket通讯是非常简单的,我们只需 ...