【HDOJ】【2829】Lawrence
DP/四边形不等式
做过POJ 1739 邮局那道题后就很容易写出动规方程:
dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价)
$w(l,r)=\sum_{i=l}^{r}\sum_{j=i+1}^{r}a[i]*a[j]$
那么就有 $w(l,r+1)=w(l,r)+a[j]*\sum\limits_{i=l}^{r}a[i]$
所以:w[i][j]明显满足 关于区间包含的单调性
然后我们大胆猜想,小(bu)心(yong)证明,w[i][j]满足四边形不等式,所以这题就跟邮局那题一样了……
咳咳好吧作为一个有节操的人,我还是尝试着证明了一下(结果发现用来证明的时间比我写代码的时间要长……)
先把w(i,j)的定义搬下来:\[ w(l,r)=\sum\limits_{i=l}^{r}\sum\limits_{j=i+1}^{r}a[i]*a[j] \]
形象一点来说就是:
对于$ i\leq i' < j \leq j' $
中间的都是要算两次,剩下的部分:
(左)表示w(i,i'-1),[左]表示 $\sum_{k=i}^{i'-1}a[k] $
(中)表示w(i',j),[中]表示 $\sum_{k=i'}^j a[k] $
(右)表示w(j+1,j'),[右]表示 $\sum_{k=j+1}^{j'} a[k] $
\[ w(i,j)+w(i',j')=(左)+[左]*[中]+(右)+[右]*[中]+(中) \\ w(i,j')+w(i',j)=(左+右)+[左+右]*[中]+(中) \]
其中\[ [左+右]*[中]=[左]*[中]+[右]*[中] \]
但\[ (左+右)=(左)+(右)+[左]*[右] \]
所以\[ (左+右)>(左)+(右) \]
所以\[w(i,j)+w(i',j') \leq w(i,j')+w(i',j) \]
//HDOJ 2829
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,INF=~0u>>;
const double eps=1e-;
#define debug
/*******************template********************/
int dp[N][N],s[N][N],w[N][N],b[N],a[N],n,m; int main(){
while(scanf("%d%d",&n,&m)!=EOF && n){
m++;
F(i,,n) a[i]=getint();
F(i,,n){
b[i]=a[i];
w[i][i]=;
F(j,i+,n){
w[i][j]=w[i][j-]+a[j]*b[i];
b[i]+=a[j];
}
}
F(i,,n) F(j,,m) dp[j][i]=INF;
F(i,,n){
dp[][i]=w[][i];
s[][i]=;
}
F(i,,m){
s[i][n+]=n;
D(j,n,i)
F(k,s[i-][j],s[i][j+])
if(dp[i-][k]+w[k+][j]<dp[i][j]){
s[i][j]=k;
dp[i][j]=dp[i-][k]+w[k+][j];
}
}
printf("%d\n",dp[m][n]);
}
return ;
}
Lawrence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2448 Accepted Submission(s): 1093
E. Lawrence was a controversial figure during World War I. He was a
British officer who served in the Arabian theater and led a group of
Arab nationals in guerilla strikes against the Ottoman Empire. His
primary targets were the railroads. A highly fictionalized version of
his exploits was presented in the blockbuster movie, "Lawrence of
Arabia".
You are to write a program to help Lawrence figure out
how to best use his limited resources. You have some information from
British Intelligence. First, the rail line is completely linear---there
are no branches, no spurs. Next, British Intelligence has assigned a
Strategic Importance to each depot---an integer from 1 to 100. A depot
is of no use on its own, it only has value if it is connected to other
depots. The Strategic Value of the entire railroad is calculated by
adding up the products of the Strategic Values for every pair of depots
that are connected, directly or indirectly, by the rail line. Consider
this railroad: 
Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.
Now,
suppose that Lawrence only has enough resources for one attack. He
cannot attack the depots themselves---they are too well defended. He
must attack the rail line between depots, in the middle of the desert.
Consider what would happen if Lawrence attacked this rail line right in
the middle: 
The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots: 
The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.
Given
a description of a railroad and the number of attacks that Lawrence can
perform, figure out the smallest Strategic Value that he can achieve
for that railroad.
will be several data sets. Each data set will begin with a line with
two integers, n and m. n is the number of depots on the railroad
(1≤n≤1000), and m is the number of attacks Lawrence has resources for
(0≤m<n). On the next line will be n integers, each from 1 to 100,
indicating the Strategic Value of each depot in order. End of input will
be marked by a line with n=0 and m=0, which should not be processed.
each data set, output a single integer, indicating the smallest
Strategic Value for the railroad that Lawrence can achieve with his
attacks. Output each integer in its own line.
4 5 1 2
4 2
4 5 1 2
0 0
2
【HDOJ】【2829】Lawrence的更多相关文章
- 【HDOJ图论题集】【转】
=============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...
- 【集训笔记】博弈论相关知识【HDOJ 1850【HDOJ2147
以下资料来自:http://blog.csdn.net/Dinosoft/article/details/6795700 http://qianmacao.blog.163.com/blog/stat ...
- 【HDOJ 5379】 Mahjong tree
[HDOJ 5379] Mahjong tree 往一颗树上标号 要求同一父亲节点的节点们标号连续 同一子树的节点们标号连续 问一共同拥有几种标法 画了一画 发现标号有二叉树的感觉 初始标号1~n 根 ...
- HDOJ 1238 Substrings 【最长公共子串】
HDOJ 1238 Substrings [最长公共子串] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】
HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...
- HDOJ 1501 Zipper 【DP】【DFS+剪枝】
HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- 【HDOJ 2089】不要62
[HDOJ 2089]不要62 第一个数位dp的题 做的老困难了...只是好歹是做出来了 迈出了第一步.. 对大牛来说这样的题都是小case ps:新上一个记忆化方法 一些绕弯的题里用dfs好想些 代 ...
- 【HDOJ 5371】 Hotaru's problem
[HDOJ 5371] Hotaru's problem Manacher算法+穷举/set Manacher算法一好文:http://blog.csdn.net/yzl_rex/article/de ...
- 【HDOJ 5654】 xiaoxin and his watermelon candy(离线+树状数组)
pid=5654">[HDOJ 5654] xiaoxin and his watermelon candy(离线+树状数组) xiaoxin and his watermelon c ...
- 【HDOJ 5399】Too Simple
pid=5399">[HDOJ 5399]Too Simple 函数映射问题 给出m函数 里面有0~m个函数未知(-1) 问要求最后1~n分别相应仍映射1~n 有几种函数写法(已给定的 ...
随机推荐
- 两种会话状态之Session会话
什么是Session 使用Cookie和附加URL参数都可以将上一次请求的状态信息传递到下一次请求中,但是如果传递的状态信息较多,将极大降低网络传输效率和增大服务器端程序处理的难度. Session技 ...
- 操作MySQL数据库
向表中插入数据 insert 语句可以用来将一行或多行数据插到数据库表中, 使用的一般形式如下: insert [into] 表名 [(列名1, 列名2, 列名3, ...)] values (值1, ...
- Decorator模式
Decorator模式能够像标准的继承一样为类添加新的功能. 不同于标准继承机制的是,如果对象进行了实例化,Decorator模式能够在运行时动态地为对象添加新的功能. <?php abstra ...
- express中使用 connect-flash 及其源码研究
刚开始摸node.js, 在用express 4.x 的过程中 有一个connect-flash的玩意 如上图, 在 /reg 页面提交注册信息的时候 如若两次输入的密码不匹配则调用请求对象req的f ...
- C#之事件初步
上文简述了委托,所谓的简述,只是说了一下如何使用委托,既然有了委托的基础,便可以稍微一探事件的机制. 事件,实际上是委托类型,事件处理函数如下: public delegate void MyHand ...
- JavaWeb之Servlet:请求 与 响应
1 引入 浏览器和服务器的种类都有很多,要在它们之间通讯,必定要遵循一定的准则,而http协议就是这样的一个"准则". Http协议:规定了 浏览器 和 服务器 数据传输的一种格式 ...
- MIFARE系列4《组成图》
MIFARE集成电路芯片内含EEPROM.RF接口和数字控制单元. 1. RF射频接口 在RF射频接口电路中,主要包括有波形转换模块.它可将卡片读写器上的13.56MHZ的无线电调制频率接收,一方面送 ...
- ORACLE-RAC-11G-R2_INSTALL
ORACLE 11.2.0.3 RAC INSTALL 20 ...
- Node.js中的模块化
每天一篇文章来记录记录自己的成长吧.大二,该静心了.加油~ 好了,废话不多说,今天说说nodejs中的模块化.(注:此文为自己对书nodejs实战的总结) nodejs一个重要的特性就是模块化,模块就 ...
- 微软云平台媒体服务实践系列 2- 使用动态封装为iOS, Android , Windows 等多平台提供视频点播(VoD)方案
文章微软云平台媒体服务实践系列 1- 使用静态封装为iOS, Android 设备实现点播(VoD)方案 介绍了如何针对少数iOS, Android 客户端的场景,出于节约成本的目的使用媒体服务的静 ...