tyvj 1057 dp 变形背包
背景
描述
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
输入格式
N m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式
测试样例1
输入
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出
2200
备注
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<queue>
#define ll __int64
using namespace std;
int n,m;
int a,b,c;
struct node
{
int w;
int s;
int w1,s1;
int w2,s2;
} N[];
int used[];
int dp[];
int main()
{
memset(used,,sizeof(used));
memset(N,,sizeof(N));
memset(dp,,sizeof(dp));
scanf("%d %d",&n,&m);
for(int i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
if(c==)
{
N[i].w=a;
N[i].s=b;
}
else
{
if(used[c]==)
{
N[c].w1=a;
N[c].s1=b;
used[c]=;
}
else
{
N[c].w2=a;
N[c].s2=b;
}
}
}
for(int i=; i<=m; i++)
{
for(int k=n; k>=; k--)
{
if(k>=(N[i].w+N[i].w1+N[i].w2))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w1+N[i].w2)]+N[i].w*N[i].s+N[i].w1*N[i].s1+N[i].w2*N[i].s2);
if(k>=(N[i].w+N[i].w1))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w1)]+N[i].w*N[i].s+N[i].w1*N[i].s1);
if(k>=(N[i].w+N[i].w2))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w2)]+N[i].w*N[i].s+N[i].w2*N[i].s2);
if(k>=N[i].w)
dp[k]=max(dp[k],dp[k-N[i].w]+N[i].w*N[i].s);
}
}
cout<<dp[n]<<endl;
return ;
}
tyvj 1057 dp 变形背包的更多相关文章
- USACO Money Systems Dp 01背包
一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)
HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...
- HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)
HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...
- HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)
HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...
- HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)
HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...
- HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)
HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...
- HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)
HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...
随机推荐
- bzoj 2243: [SDOI2011]染色
#include<cstdio> #include<iostream> #define M 1000006 #define N 1000006 using namespace ...
- 二模 (10)day1
第一题: 题目描述: 一个阅览室每天都要接待大批读者.阅览室开门时间是0,关门时间是T.每位读者的到达时间都不一样,并且想要阅读的刊物不超过5本.每位读者心里对自己想看的刊物都有一个排位,到达之后他会 ...
- 一键制作u盘启动盘教程
第一步:制作完成u深度u盘启动盘 第二步:下载Ghost Win7系统镜像文件包,存入u盘启动盘 第三步:电脑模式更改成ahci模式,不然安装完成win7系统会出现蓝屏现象 正式安装步骤: u ...
- SO从 \u 这样的字符串 构建对象
ShowMessage(SO('\u4F18\u8D28\u670D\u52A112').AsString); 正确 得到 优质服务12 ShowMessage(so( 个数字,后面的中文未能解析出.
- jsp:useBean标准动作
1.bean法则 JavaBean和企业JavaBean是完全不相干的两个东西.普通的非企业JavaBean需要满足一定的规范才能被JSP和servlet使用: 1)必须有一个无参数的公共构造函数: ...
- HDU 5382 莫比乌斯反演
题目大意: 求S(n)的值 n<=1000000 这是官方题解给出的推导过程,orz,按这上面说的来写,就不难了 这里需要思考的就是G(n)这个如何利用积性函数的性质线性筛出来 作为一个质数,那 ...
- MSP430x1_4_6x之问题总结
01:MSP430端口上电复位的初始值是不确定的:所以使用是都要初始化:比如加下面的语句或者加你使用的端口就行了: /*下面六行程序关闭所有的IO口*/ P1DIR = 0XFF;P1OUT ...
- IPAD2 5.1.1越狱后的屏幕不能自动旋转~~~
己顶,出现这问题的原因是因为越狱安装了插件的原因.问题解决了,大家没有遇到类似的问题吗?问题出在大家都装了一个SBSettings的插件,解决办法就是在这个插件的ISO 5+ Notification ...
- 免费获得NOD32 半年、1年 激活码-14.08.12到期
地址: http://nod32.ruanmei.com/ 活动时间: 2014年8月6日 - 8月12日(全部送完将提前终止). 活动规则: 1.每台电脑限领1枚NOD32激活码: 2.领到的NOD ...
- Oracle Data Integrator 12c (12.1.2)新特性
改进特性如下: 基于流程界面的声明式设计 在12c中,以前的接口(interface)已经改为映射(mapping),新的基于流程声明的设计方式更灵活,也更容易使用.在12c中,映射的实现是通过使用J ...