题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2182

题意:给出一个无向图,问最少删掉多少个顶点之后图变得不连通?

思路:将原图每个点拆点(i,i+n),连边<i,i+n,1>,对原图的边(u,v),连边<u+n,v,INF>,<v+n,u,INF>。然后对于每对顶点(i,j)跑最大流(i+n,j)。所有最大流的最小值即为答案。

struct node
{
    int v,cap,next;
};

node edges[N*10];
int head[N],e;
int curedge[N],h[N],num[N],pre[N];
int s,t;

void add(int u,int v,int cap)
{
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap)
{
    add(u,v,cap);
    add(v,u,0);
}

int Maxflow(int s,int t,int n)
{
    clr(h,0); clr(num,0);
    int i;
    FOR0(i,n+1) curedge[i]=head[i];
    int u=s,Min,k,x,ans=0;
    while(h[u]<n)
    {
        if(u==t)
        {
            Min=INF*100;
            for(i=s;i!=t;i=edges[curedge[i]].v)
            {
                x=curedge[i];
                if(edges[x].cap<Min)
                {
                    Min=edges[x].cap;
                    k=i;
                }
            }
            ans+=Min; u=k;
            for(i=s;i!=t;i=edges[curedge[i]].v)
            {
                x=curedge[i];
                edges[x].cap-=Min;
                edges[x^1].cap+=Min;
            }
        }
        for(i=curedge[u];i!=-1;i=edges[i].next)
        {
            if(edges[i].cap>0&&h[u]==h[edges[i].v]+1)
            {
                break;
            }
        }
        if(i!=-1)
        {
            curedge[u]=i;
            pre[edges[i].v]=u;
            u=edges[i].v;
        }
        else
        {
            if(--num[h[u]]==0) break;
            curedge[u]=head[u];
            x=n;
            for(i=head[u];i!=-1;i=edges[i].next)
            {
                k=edges[i].v;
                if(edges[i].cap>0&&h[k]<x) x=h[k];
            }
            h[u]=x+1; num[x+1]++;
            if(u!=s) u=pre[u];
        }
    }
    return ans;
}

int n,m;
int a[55][55];

int visit[55];

void DFS(int u)
{
    visit[u]=1;
    int i,v;
    FOR1(i,n) if(a[u][i]&&!visit[i])
    {
        DFS(i);
    }
}

int ok()
{
    clr(visit,0);
    DFS(1);
    int i;
    FOR1(i,n) if(!visit[i]) return 0;
    return 1;
}

int cal(int s,int t)
{
    clr(head,-1); e=0;
    int i,j;
    FOR1(i,n) Add(i,i+n,1);
    FOR1(i,n) for(j=1;j<=n;j++) if(a[i][j])
    {
        Add(i+n,j,INF);
    }

    return Maxflow(s+n,t,n+n+2);
}

int get()
{
    int x=0;
    char c=getchar();
    while(!isdigit(c))c=getchar();
    while(isdigit(c))
    {
        x=x*10+c-'0';
        c=getchar();
    }
    return x;
}

int main()
{
    while(scanf("%d%d",&n,&m)!=-1)
    {
        if(m==0)
        {
            if(n==0) puts("0");
            else if(n==1) puts("1");
            else puts("0");
            continue;
        }
        clr(a,0);
        int u,v,i;
        FOR0(i,m)
        {
            u=get(); v=get();

            a[u+1][v+1]=a[v+1][u+1]=1;
        }

        if(!ok())
        {
            puts("0");
            continue;
        }
        int j;
        int ans=INF;
        FOR1(i,n) for(j=1;j<=n;j++) if(i!=j)
        {
            int x=cal(i,j);
            ans=min(ans,x);
        }
        if(ans==INF||ans==n-1) ans=n;
        PR(ans);
    }
}

ZOJ 2182 Cable TV Network(无向图点割-最大流)的更多相关文章

  1. POJ 1966 ZOJ 2182 Cable TV Network

    无向图顶点连通度的求解,即最少删除多少个点使无向图不连通. 我校“荣誉”出品的<图论算法理论.实现及其应用>这本书上写的有错误,请不要看了,正确的是这样的: 对于每个顶点,分成两个点,v和 ...

  2. poj1966Cable TV Network——无向图最小割(最大流)

    题目:http://poj.org/problem?id=1966 把一个点拆成入点和出点,之间连一条边权为1的边,跑最大流即最小割: 原始的边权赋成inf防割: 枚举源点和汇点,直接相邻的两个点不必 ...

  3. Cable TV Network 顶点连通度 (最大流算法)

    Cable TV Network 题目抽象:给出含有n个点顶点的无向图,给出m条边.求定点联通度   K 算法:将每个顶点v拆成 v'   v''  ,v'-->v''的容量为1.       ...

  4. POJ 1966 Cable TV Network (无向图点连通度)

    [题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...

  5. UVA-1660 Cable TV Network (最小割)

    题目大意:给一张n个点.m条边的无向图,求最小点割集的基数. 题目分析:求无向图最小点割集的基数可以变成求最小割.考虑单源s单汇t的无向图,如果要求一个最小点集,使得去掉这个点集后图不再连通(连通分量 ...

  6. POJ 1966 Cable TV Network (最大流最小割)

    $ POJ~1966~Cable~TV~Network $ $ solution: $ 第一眼可能让人很难下手,但本就是冲着网络流来的,所以我们直接一点.这道题我们要让这个联通图断开,那么势必会有两个 ...

  7. POJ 1966 Cable TV Network(顶点连通度的求解)

                               Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  8. UVA1660 电视网络 Cable TV Network

    题目地址:UVA1660 电视网络 Cable TV Network 枚举两个不直接连通的点 \(S\) 和 \(T\) ,求在剩余的 \(n-2\) 个节点中最少去掉多少个可以使 \(S\) 和 \ ...

  9. POJ 1966 Cable TV Network

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4702   Accepted: 2173 ...

随机推荐

  1. bootstrap, boosting, bagging 几种方法的联系

    http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...

  2. Java高效编程之二【对所有对象都通用的方法】

    对于所有对象都通用的方法,即Object类的所有非final方法(equals.hashCode.toString.clone和finalize)都有明确的通用约定,都是为了要被改写(override ...

  3. zw版【转发·台湾nvp系列Delphi例程】HALCON CropPart

    zw版[转发·台湾nvp系列Delphi例程]HALCON CropPart procedure TForm1.Button1Click(Sender: TObject);var ho_Egypt1 ...

  4. opencv载入,显示及保存图像

    1.声明一个表示图像的变量,在OpenCV2中,这个变量是cv::Mat类型,该类是用于保存图像以及其他矩阵数据的数据结构.默认情况下它们的尺寸为0. cv::Mat  image;       // ...

  5. oracle的面试问题

    1. Oracle跟SQL Server 2005的区别? 宏观上: 1). 最大的区别在于平台,oracle可以运行在不同的平台上,sql server只能运行在windows平台上,由于windo ...

  6. OpenStack 虚拟机监控方案确定

    Contents [hide] 1 监控方案调研过程 1.1 1. 虚拟机里内置监控模块 1.2 2. 通过libvirt获取虚拟机数据监控. 2 a.测试openstack的自待组件ceilomet ...

  7. COM编程之一 组件

    [1]组件产生的背景 一个应用程序通常是由单个二进制文件组成的. 当应用程序版本发布后一般不会发生任何变化,对于操作系统.硬件以及客户需求的改变都必须要等到修复源代码后且整个应用程序被重新编译才可处理 ...

  8. wxPython_Phoenix在线安装

    转自:http://blog.csdn.net/xiaodong193/article/details/51920283 wxpython在python 3.X下变成了wxpython Project ...

  9. jiffies溢出与时间先后比较-time_after,time_before【转】

    转自:http://www.cnblogs.com/hfyinsdu/p/4600052.html 参考地址: http://blog.csdn.net/jk110333/article/detail ...

  10. oracle 11g 64w 用32位的pl/sql

    1.  下载64位Oracle,解压两文件,解压完成后将文件合并,安装: 2.  下载PL/SQL,安装: 3.  下载instantclient-basic-win32-11.2.0.1.0.zip ...