1.buffer使用image的方式:Horizontal 与 Vertical 算法一样, 共需30ms,wait time 19ms.

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
__kernel void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; const int s = ;
const int nStart = ; float lines[];
for(int i=;i<;i++)
lines[i] = read_imagef( source, sampler, (int2) (i-, y) ).x; for(int j=;j<imgWidth;){
float sum = lines[nStart] * m_nFilter[nStart];
#define GaussianTwoLines(m) \
sum += ( (lines[m] + lines[s--m])*m_nFilter[m] );
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines() write_imagef( dest, (int2) (j, y), sum ); for(int i = ; i<s-; i++) lines[i] = lines[i+];
j++;
lines[s-] = read_imagef( source, sampler, (int2) (j+, y) ).x;
}
} __kernel void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image
__write_only image2d_t dest,
const int imgWidth ,
const int imgHeight)
{
const int x = get_global_id();
if(x>=(imgWidth))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; const int s = ;
const int nStart = ; float lines[];
for(int i=;i<;i++)
lines[i] = read_imagef( source, sampler, (int2) (x ,i-) ).x; for(int j=;j<imgHeight;){
float sum = lines[nStart] * m_nFilter[nStart];
#define GaussianTwoLines(m) \
sum += ( (lines[m] + lines[s--m])*m_nFilter[m] );
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines() write_imagef( dest, (int2) (x, j), sum ); for(int i = ; i<s-; i++) lines[i] = lines[i+];
j++;
lines[s-] = read_imagef( source, sampler, (int2) (x,j+) ).x;
}
}

2.只运行 Horizontal 19ms,wait time 19ms. 注释掉 write_imagef 2.4ms(wait time,run time都是0.0xms)(更新:sum计算被优化,0.x ms就是读image的时间).

a.顺序调整为:

lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

write_imagef( dest, (int2) (j-1, y), sum );

16.9ms,很奇怪sum用固定的0,0.2替代时间只有3.9ms?????把计算部分注释掉,只读写imgage,也是3.9ms, 计算sum的部分被编译器优化掉了?

b. if(sum>0)

lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

write_imagef( dest, (int2) (j-1, y), 0.2 );

如此测试,17ms,看来是sum的计算被优化掉了.

c.if(sum>=0)

j++;

//lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

//write_imagef( dest, (int2) (j-1, y), sum );

只计算,5.7ms,但还是wait time 5.7ms???

3.使用float16 vector 计算,总共耗时15.6 ms,wait time 9.3ms,rum time 6.3ms.使用 __attribute__ 能减少1ms以内.其中Horizontal:wait time 9.4ms,rum time 0.008ms ,Vertical:wait time 0.07ms,rum time 6.4ms.

不知道为什么使用fma指令替代sum+= ,需要近2s,而且localWorksize最大只能32.

使用half16 精度,反而还要17ms,而且结果有1-2的误差。

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

__kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; #define r(xc,y) read_imagef( source, sampler, (int2) (xc, y) ).x
#define r16(x,y) (float16)( r(x,y),r(x+1,y),r(x+2,y),r(x+3,y),r(x+4,y),r(x+5,y),r(x+6,y),r(x+7,y),\
r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y)) #define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
write_imagef( dest, (int2) (x+, y), sum.s2 );write_imagef( dest, (int2) (x+, y), sum.s3 );\
write_imagef( dest, (int2) (x+, y), sum.s4 );write_imagef( dest, (int2) (x+, y), sum.s5 );\
write_imagef( dest, (int2) (x+, y), sum.s6 );write_imagef( dest, (int2) (x+, y), sum.s7 );\
write_imagef( dest, (int2) (x+, y), sum.s8 );write_imagef( dest, (int2) (x+, y), sum.s9 );\
write_imagef( dest, (int2) (x+, y), sum.sa );write_imagef( dest, (int2) (x+, y), sum.sb );\
write_imagef( dest, (int2) (x+, y), sum.sc );write_imagef( dest, (int2) (x+, y), sum.sd );\
write_imagef( dest, (int2) (x+, y), sum.se );write_imagef( dest, (int2) (x+, y), sum.sf ); float16 line0 = r16(-,y);
for(int j=;j<imgWidth;){
float16 line1 = r16(j-+,y); float16 temp0;
float16 temp1;
temp0 = line0;
temp1.s0123 = line0.sabcd;
temp1.s45 = line0.sef;
temp1.s67 = line1.s01;
temp1.s89abcdef = line1.s23456789;
float16 sum = ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s0;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s9;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s1;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s8;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s2;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s7;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s3;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s6;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s4;
sum += ( temp0 ) * m_nFilter[]; line0 = line1;
w16(j,y,sum );
j+=;
} } __kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image
__write_only image2d_t dest,
const int imgWidth ,
const int imgHeight)
{
const int x = get_global_id();
if(x>=(imgWidth))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; #define rv16(x,y) (float16)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3),r(x,y+4),r(x,y+5),r(x,y+6),r(x,y+7),\
r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+)) #define wv16(x,y,sum) write_imagef( dest, (int2) (x,y), sum.s0 );write_imagef( dest, (int2) (x,y+1), sum.s1 );\
write_imagef( dest, (int2) (x,y+), sum.s2 );write_imagef( dest, (int2) (x,y+), sum.s3 );\
write_imagef( dest, (int2) (x,y+), sum.s4 );write_imagef( dest, (int2) (x,y+), sum.s5 );\
write_imagef( dest, (int2) (x,y+), sum.s6 );write_imagef( dest, (int2) (x,y+), sum.s7 );\
write_imagef( dest, (int2) (x,y+), sum.s8 );write_imagef( dest, (int2) (x,y+), sum.s9 );\
write_imagef( dest, (int2) (x,y+), sum.sa );write_imagef( dest, (int2) (x,y+), sum.sb );\
write_imagef( dest, (int2) (x,y+), sum.sc );write_imagef( dest, (int2) (x,y+), sum.sd );\
write_imagef( dest, (int2) (x,y+), sum.se );write_imagef( dest, (int2) (x,y+), sum.sf ); float16 line0 = rv16(x,-);
for(int j=;j<imgHeight;){
float16 line1 = rv16(x,j-+); float16 temp0;
float16 temp1;
temp0 = line0;
temp1.s0123 = line0.sabcd;
temp1.s45 = line0.sef;
temp1.s67 = line1.s01;
temp1.s89abcdef = line1.s23456789;
float16 sum = ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s0;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s9;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s1;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s8;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s2;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s7;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s3;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s6;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s4;
sum += ( temp0 ) * m_nFilter[]; line0 = line1;
wv16(x,j,sum );
j+=;
}
}

opencl gauss filter优化(二)的更多相关文章

  1. opencl gauss filter优化(三)

    1.根据前两次的最终结果: 使用普通buffer,Horizontal 5ms, Vertical 17 ms 使用image buffer:Horizontal 9.4ms, Vertical 6. ...

  2. opencl gauss filter优化(一)

    Platform: LG G3, Adreno 330 ,img size 3264x2448 C code neon GPU 300 60 29 单位:ms 1. 目前按如下行列分解的方式最快29m ...

  3. Anisotropic gauss filter

    最近一直在做版面分析,其中文本行检测方面,许多文章涉及到了Anigauss也就是各向异性高斯滤波. 顾名思义,简单的理解就是参数不同的二维高斯滤波. 在文章Fast Anisotropic Gauss ...

  4. EMW 性能优化二之---并发配置

    EMW 性能优化二之---并发配置 在前一个日志中写到交货的异步更新,对于RFUI RF的前台操作会提升效率,异步更新不用等待更新状态的返回,启用更新队列的方式执行(SM13). 下面再补全性能相关的 ...

  5. MySQL优化二(连接优化和缓存优化)

    body { font-family: Helvetica, arial, sans-serif; font-size: 14px; line-height: 1.6; padding-top: 10 ...

  6. mysql优化二之锁机制

    mysql优化二之锁机制 mysql提供了锁机制和MVCC机制来保证并发操作的安全性,这里主要讨论锁机制, MVCC见下篇文章 mysql的锁按照锁粒度可分为行锁与表锁,按照操作类型划分可读锁和写锁 ...

  7. Emacs 启动优化二三事

    Emacs 启动优化二三事 */--> div.org-src-container { font-size: 85%; font-family: monospace; } p {font-siz ...

  8. MySQL性能优化(二):优化数据库的设计

    原文:MySQL性能优化(二):优化数据库的设计 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.n ...

  9. 二维高斯滤波器(gauss filter)的实现

    我们以一个二维矩阵表示二元高斯滤波器,显然此二维矩阵的具体形式仅于其形状(shape)有关: def gauss_filter(kernel_shape): 为实现二维高斯滤波器,需要首先定义二元高斯 ...

随机推荐

  1. ural 1114,计数dp

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1114 题意:N个盒子,a个红球,b个蓝球,把求放到盒子中去,没有任何限制,有多少种放法. ...

  2. Poj(3686),最小权匹配,多重匹配,KM

    题目链接 The Windy's | Time Limit: 5000MS | Memory Limit: 65536K | | Total Submissions: 4939 | Accepted: ...

  3. 制作透明色:《CSS3 RGBA》与Opacity样式用法

    前面我们一起探讨了一下CSS3 Gradient(css3 渐变),今天我们一起来探讨一下CSS3中的RGBA.RGB对于大家来说一点不陌生,他就是红色R+绿色G+蓝色B,那现在我们所说的RGBA又是 ...

  4. linux lamp服务器安装配置

    1 安装Apache服务器 yum -y install httpd httpd-devel 如何查看服务: systemctl  | grep httpd 启动apache: service htt ...

  5. Mysql ERROR 1064 (42000)

    创建了一个表: +-------------+--------------+------+-----+---------+----------------+ | Field | Type | Null ...

  6. [转]or cad drc 错误

    本文转自 恋上姐的博客 http://blog.sina.com.cn/u/1750715103 用“取缔”一词,是源自<嘻哈四重奏>里面卢导的口头禅,哈哈借用一下!大多数DRC warn ...

  7. sqlmap基本命令

    ./sqlmap.py –h //查看帮助信息./sqlmap.py –u “http://www.anti-x.net/inject.asp?id=injecthere” //get注入./sqlm ...

  8. Metasploit中使用Nessus插件命令

    基本命令 导入扫描结果 db_import  /路径/文件.nessus 查看数据库里面现有的IP信息 msf > db_hosts -c address,svcs,vulns(注:vulns是 ...

  9. ironpython 2.75 在c#中的使用

    ironpython的介绍请自行搜索. 一句话,python是一个类似lua js的动态预言.ironpython是在net环境执行python的类库. 效果:在网站中调用一个python文件test ...

  10. 3.25考试(hnoi难度)----神奇的一日游

    T1怕老婆 有一天hzy9819,来到了一座大城市拥有了属于他自己的一双滑板鞋.但是他还是不满足想要拥有属于自己的一栋楼,他来到了一条宽敞的大道上,一个一个记录着这些楼的层数以方便自己选择. hzy9 ...