HDU 4123(树的直径+单调队列)
Bob’s Race
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2833 Accepted Submission(s): 917
The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries.
The following N-1 lines, each contains three integers, x, y and z, indicating that there is a road of length z connecting house x and house y.
The following M lines are the queries. Each line contains an integer Q, asking that at most how many people can take part in Bob’s race according to the above mentioned rules and under the condition that the“race difference”is no more than Q.
The input ends with N = 0 and M = 0.
(N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000)
1 2 3
2 3 4
4 5 3
3 4 2
1
2
3
4
5
0 0
3
3
3
5
#include <stdio.h>
#include <string.h>
#define MAX 10001
#define max(a,b) (a)>(b)?(a):(b) struct node { int v,len,sum;
node *next;
}*head[MAX*],tree[MAX*];
__int64 dp[MAX];
int n,ptr,vis[MAX]; void Initial() { ptr = ;
memset(dp,,sizeof(dp));
memset(vis,,sizeof(vis));
memset(head,NULL,sizeof(head));
}
void AddEdge(int x,int y,int len) { tree[ptr].v = y,tree[ptr].len = len;
tree[ptr].next = head[x],head[x] = &tree[ptr++];
//printf("ptr : %d **** tree[ptr].v: ")
tree[ptr].v = x,tree[ptr].len = len;
tree[ptr].next = head[y],head[y] = &tree[ptr++];
}
void Dfs(int v) { vis[v] = ;
node *p = head[v]; while (p != NULL) { if (!vis[p->v]) { Dfs(p->v);
dp[v] = max(dp[v],dp[p->v]+p->len);
p->sum = dp[p->v] + p->len;
}
p = p->next;
}
}
void Tree_DP(int pa,int son) { if (vis[son]) return;
vis[son] = ;
int i,j,k,maxx = ; node *p = head[pa];
while (p != NULL) {
//找到父节点除son外其他分支的最大价值
if (p->v != son)
maxx = max(maxx,p->sum);
p = p->next;
} p = head[son];
while (p != NULL) { if (p->v == pa) {
//这一步至关重要,往上更新,才能保证每步都得到最优解
p->sum = p->len + maxx;
break;
}
p = p->next;
} p = head[son];
while (p != NULL) {
//每次都更新当前节点,并往下递归计算,父节点会因为vis=1而不计算
dp[son] = max(dp[son],p->sum);
Tree_DP(son,p->v);
p = p->next;
}
} int main()
{
int i,j,k,a,b; while (scanf("%d",&n) != EOF) { Initial();
for (i = ; i <= n; ++i) { scanf("%d%d",&a,&b);
AddEdge(i,a,b);
} Dfs();
memset(vis,,sizeof(vis));
node *p = head[];
while (p != NULL) { Tree_DP(,p->v);
p = p->next;
}
for (i = ; i <= n; ++i)
printf("%I64d\n",dp[i]);
}
}
还有一种其他的理解,这种我感觉比较好理解的。
先建一棵有根数。
求出每个节点到叶子的最长距离和次长距离,并记录到最长距离要经过的子节点(与其相连那一个)。
接下来分两种情况:
(1)当前节点的最长距离经过某子节点,则某子节点的最长距离为当前节点的次长距离和某子节点的最长距离的最大值加当前节点到某子节点的距离
(2)当前节点的最长距离不经过某子节点,则某子节点的最长距离为当前节点的最长距离和某子节点的最长距离的最大值加当前节点到某子节点的距离
更新子节点
hdu2196
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define sfl(n) scanf("%I64d", &n)
#define pfi(n) printf("%d\n", n)
#define pfl(n) printf("%I64d\n", n)
#define MAXN 1000005 struct Node
{
int v, len;
Node* next;
}*head[MAXN], tree[MAXN * ];
bool vis[MAXN];
int c = ;
int last[MAXN];
ll maxlen[MAXN], smaxlen[MAXN];
ll dp[MAXN];
void init()
{
c = ;
_cle(vis, );
_cle(head, NULL);
_cle(dp, );
_cle(last, );
return ;
} void Add_Edge(int x, int y, int len)
{
tree[c].v = y, tree[c].len = len;
tree[c].next = head[x], head[x] = &tree[c++];
tree[c].v = x, tree[c].len = len;
tree[c].next = head[y], head[y] = &tree[c++];
} void dfs(int fa, int pre)
{
if(vis[fa]) return ;
vis[fa] = ;
Node* p = head[fa];
while(p != NULL)
{
dfs(p -> v, fa);
p = p -> next;
}
int maxn = ;
p = head[fa];
while(p != NULL)
{
if(maxn < p -> len + maxlen[p -> v] && p -> v != pre)
{
maxn = p -> len + maxlen[p -> v];
last[fa] = p -> v;
}
p = p -> next;
}
maxlen[fa] = maxn;
maxn = ;
p = head[fa];
while(p != NULL)
{
if(p -> v != pre && p -> v != last[fa] && maxn < p -> len + maxlen[p -> v])
maxn = p -> len + maxlen[p -> v];
p = p -> next;
}
smaxlen[fa] = maxn;
return ;
} void DP(int fa)
{
vis[fa] = ;
Node* p = head[fa];
while(p != NULL)
{
if(!vis[p -> v])
{
if(last[fa] != p -> v)
dp[p -> v] = max(dp[fa], maxlen[fa]) + p -> len;
else
dp[p -> v] = max(dp[fa], smaxlen[fa]) + p -> len;
DP(p -> v);
}
p = p -> next;
}
return ;
} int main()
{
int n;
while(~sfi(n))
{
init();
int x, y, len;
repu(i, , n + )
{
sfi(y), sfi(len);
Add_Edge(i, y, len);
} dfs(, -);
_cle(vis, );
DP();
repu(i, , n + )
{
// pfl(smaxlen[i]);
pfl(max(maxlen[i], dp[i]));
}
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn = ;
vector<int> son[maxn], w[maxn];
bool vis[maxn], viss[maxn];
int f[maxn];
int bfs(int root){
int i, j, k;
int ans = root, maxx = ;
queue<int> q;
memset(vis,,sizeof(vis));
memset(f,,sizeof(f));
q.push(root);
vis[root] = ;f[root] = ;viss[root] = ;
while(!q.empty()){
root = q.front();
q.pop();
for(i=;i<son[root].size();i++){
if(vis[son[root][i]]==){
q.push(son[root][i]);
vis[son[root][i]] = ;viss[son[root][i]] = ;
f[son[root][i]] = f[root]+w[root][i];
if(maxx<f[son[root][i]]){
maxx = f[son[root][i]];
ans = son[root][i];
}
}
}
}
return ans;
}
int solve(int root){
int u, v;
u = bfs(root);
v = bfs(u);
return f[v];
}
int main(){
int i, j, k, n, m;
int x1, x2, l, u;
int res;
char opt;
while(~scanf("%d%d",&n,&m)){
for(i=;i<=n;i++){
son[i].clear();
w[i].clear();
}
for(i=;i<m;i++){
scanf("%d%d%d",&x1,&x2,&l);
scanf(" %c",&opt);
son[x1].push_back(x2);w[x1].push_back(l);
son[x2].push_back(x1);w[x2].push_back(l);
}
res = ;
memset(viss,,sizeof(vis));
for(i=;i<=n;i++){
if(viss[i]==){
res = max(res,solve(i));
}
}
printf("%d\n",res);
}
return ;
}
二、单调队列问题
就是单调队列+类似尺取法吧
下面是完整代码:
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define sfl(n) scanf("%I64d", &n)
#define pfi(n) printf("%d\n", n)
#define pfl(n) printf("%I64d\n", n)
#define MAXN 1000005 struct Node
{
int v, len;
Node* next;
}*head[MAXN], tree[MAXN * ];
bool vis[MAXN];
int c = ;
int last[MAXN];
ll maxlen[MAXN], smaxlen[MAXN];
ll dp[MAXN];
ll p[MAXN];
void init()
{
c = ;
_cle(vis, );
_cle(head, NULL);
_cle(dp, );
_cle(last, );
return ;
} void Add_Edge(int x, int y, int len)
{
tree[c].v = y, tree[c].len = len;
tree[c].next = head[x], head[x] = &tree[c++];
tree[c].v = x, tree[c].len = len;
tree[c].next = head[y], head[y] = &tree[c++];
} void dfs(int fa, int pre)
{
if(vis[fa]) return ;
vis[fa] = ;
Node* p = head[fa];
while(p != NULL)
{
dfs(p -> v, fa);
p = p -> next;
}
int maxn = ;
p = head[fa];
while(p != NULL)
{
if(maxn < p -> len + maxlen[p -> v] && p -> v != pre)
{
maxn = p -> len + maxlen[p -> v];
last[fa] = p -> v;
}
p = p -> next;
}
maxlen[fa] = maxn;
maxn = ;
p = head[fa];
while(p != NULL)
{
if(p -> v != pre && p -> v != last[fa] && maxn < p -> len + maxlen[p -> v])
maxn = p -> len + maxlen[p -> v];
p = p -> next;
}
smaxlen[fa] = maxn;
return ;
} void DP(int fa)
{
vis[fa] = ;
Node* p = head[fa];
while(p != NULL)
{
if(!vis[p -> v])
{
if(last[fa] != p -> v)
dp[p -> v] = max(dp[fa], maxlen[fa]) + p -> len;
else
dp[p -> v] = max(dp[fa], smaxlen[fa]) + p -> len;
DP(p -> v);
}
p = p -> next;
}
return ;
} int main()
{
int n, m;
while(sfi(n), sfi(m), n + m)
{
init();
int x, y, len;
repu(i, , n)
{
sfi(x), sfi(y), sfi(len);
Add_Edge(x, y, len);
} dfs(, -);
_cle(vis, );
DP();
repu(i, , n + ) p[i] = max(maxlen[i], dp[i]);
int Q;
repu(i, , m)
{
scanf("%d", &Q);
ll maxnum = ;
ll maxn = p[];
ll minn = p[];
ll num = ;
int last, maxp, minp;
last = maxp = minp = ;
repu(j, , n + )
{
if(p[j] > maxn)
{
if(p[j] - minn > Q)
{
maxnum = max(maxnum, num);
num = ;
j = min(minp + , maxp + );
maxn = minn = p[j];
maxp = minp = j;
}
else num++, maxn = p[j], maxp = j;
}
else if(p[j] < minn)
{
if(maxn - p[j] > Q)
{
maxnum = max(maxnum, num);
num = ;
j = min(minp + , maxp + );
maxn = minn = p[j];
maxp = minp = j;
}
else num++, minn = p[j], minp = j;
}
else num++;
}
maxnum = max(maxnum, num);
pfl(maxnum);
}
}
return ;
}
HDU 4123(树的直径+单调队列)的更多相关文章
- HDU 4123 Bob's Race:树的直径 + 单调队列 + st表
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 题意: 给你一棵树,n个节点,每条边有长度. 然后有m个询问,每个询问给定一个q值. 设dis[ ...
- HDU 4123 Bob’s Race 树的直径+单调队列
题意: 给定n个点的带边权树Q个询问. 以下n-1行给出树 以下Q行每行一个数字表示询问. 首先求出dp[N] :dp[i]表示i点距离树上最远点的距离 询问u, 表示求出 dp 数组中最长的连续序列 ...
- POJ 3162 Walking Race(树的直径+单调队列)
题目大意:对一棵树,求出从每个结点出发能到走的最长距离(每个结点最多只能经过一次),将这些距离按排成一个数组得到dis[1],dis[2],dis[3]……dis[n] ,在数列的dis中求一个最长的 ...
- bzoj 1999: [Noip2007]Core树网的核【树的直径+单调队列】
我要懒死了,所以依然是lyd的课件截图 注意是min{max(max(d[uk]),dis(u1,ui),dis(uj,un))},每次都从这三个的max里取min #include<iostr ...
- HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...
- hdu 5945 Fxx and game(单调队列优化DP)
题目链接:hdu 5945 Fxx and game 题意: 让你从x走到1的位置,问你最小的步数,给你两种走的方式,1.如果k整除x,那么你可以从x走一步到k.2.你可以从x走到j,j+t<= ...
- hdu 3410 Passing the Message(单调队列)
题目链接:hdu 3410 Passing the Message 题意: 说那么多,其实就是对于每个a[i],让你找他的从左边(右边)开始找a[j]<a[i]并且a[j]=max(a[j])( ...
- 大视野 1012: [JSOI2008]最大数maxnumber(线段树/ 树状数组/ 单调队列/ 单调栈/ rmq)
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 9851 Solved: 4318[Submi ...
- BZOJ 1396:识别子串 SA+树状数组+单调队列
1396: 识别子串 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 381 Solved: 243[Submit][Status][Discuss] ...
随机推荐
- TYPES、DATA、TYPE、LIKE、CONSTANTS、STATICS、TABLES
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- mysql密码忘记或者不知道,怎么办?
运行cmd: 输入mysql回车,如果成功,将出现MySQL提示符 > 连接权限数据库>use mysql; (>是本来就有的提示符,别忘了最后的分号) 修改改密码:> upd ...
- SQL SERVER 2005中同义词实例
From : http://www.cnblogs.com/jackyrong/archive/2006/11/15/561287.html 在SQL SERVER 2005中,终于出现了同义词了,大 ...
- NYOJ 士兵杀敌(三)
描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌 ...
- iOS - MVP 架构模式
1.MVP 从字面意思来理解,MVP 即 Modal View Presenter(模型 视图 协调器),MVP 实现了 Cocoa 的 MVC 的愿景.MVP 的协调器 Presenter 并没有对 ...
- Redis基础知识之—— 5个必须了解的事情【★★★★★】
一.掌控储存在Redis中的所有键 数据库的主要功能是储存数据,但是对于开发者来说,因为应用程序需求或者数据使用方法的改变,忽略存储在数据库中的某些数据是非常正常的,在Redis中同样如此.你可能忽视 ...
- SAP MM Consignment 寄售库存
转自:http://blog.csdn.net/futurewind/article/details/3985200 寄售,定义就是供应商的货物放在自己的库存中,使用的时候可以转到自己的库存,不用了就 ...
- [转载] Linux下查看内存使用情况方法总结
原文: http://9iphp.com/linux/1247.html 强烈推荐 htop.
- Android最佳性能实践(一)——合理管理内存
有不少朋友都问过我,怎样才能写出高性能的应用程序,如何避免程序出现OOM,或者当程序内存占用过高的时候该怎么样去排查.确实,一个优秀的应用程序,不仅仅要功能完成得好,性能问题也应该处理得恰到好处.为此 ...
- 使用连接(JOIN)来代替子查询(Sub-Queries) mysql优化系列记录
使用连接(JOIN)来代替子查询(Sub-Queries) MySQL从 4.1开始支持SQL的子查询.这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查 ...