转载来自: http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能。

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数

def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1

执行 fab(5),我们可以得到如下输出:

>>> fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版

def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L

可以使用如下方式打印出 fab 函数返回的 List:

>>> for n in fab(5):
... print n
...
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本

class Fab(object): 

    def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 def __iter__(self):
return self def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):
... print n
...
1
1
2
3
5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版

 def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1 '''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):
... print n
...
1
1
2
3
5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程

 >>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断

>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例

 >>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子

 def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return

Python yield 使用浅析的更多相关文章

  1. 【转】Python yield 使用浅析

    转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...

  2. Python yield 使用浅析(转)

    Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...

  3. 转:Python yield 使用浅析 from IBM Developer

    评注:没有看懂. 转: https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初 ...

  4. Python yield 使用浅析【转】

    Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...

  5. [转]Python yield 使用浅析

    您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield ...

  6. Python yield 使用浅析(iterable generator )

    http://blog.csdn.net/preterhuman_peak/article/details/40615201 如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递 ...

  7. Python yield 使用浅析(转)

    add by zhj: 说到yield,就要说说迭代器.生成器.生成器函数. 迭代器:其实就是一个可迭代对象,书上说迭代器,我个人不喜欢这个说法,有点晦涩.可迭代对象基本上可以认为是有__iter__ ...

  8. 转:Python yield 使用浅析

    初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yiel ...

  9. Python yield用法浅析(stackoverflow)

    这是stackoverflow上一个关于python中yield用法的帖子,这里翻译自投票最高的一个回答,原文链接 here 问题 Python中yield关键字的用途是什么?它有什么作用?例如,我试 ...

随机推荐

  1. js学习笔记9----时间操作

    1.时间操作函数如下: new Date();   //获取系统时间 getFullYear(); //年 getMonth()+1; //月,初始值为0 getDate(); //日 getDay( ...

  2. RabbitMQ 消息确认机制

    消息确认机制 在之前异常处理部分就已经写了,对于consumer的异常退出导致消息丢失,可以时候consumer的消息确认机制.重复的就不说了,这里说一些不一样的. consumer的消息确认机制 当 ...

  3. EmguCV控件Emgu.CV.UI.ImageBox及C# picturebox显示图片连续刷新出现闪烁问题

    在上一篇里,EmguCV(OpenCV)实现高效显示汉字及叠加  实现了视频叠加及显示,但存在问题,就是 Emgu.CV.UI.ImageBox及C# picturebox显示图片时都会出现闪烁,尤其 ...

  4. tamtam-nuget-imageserver

    https://bitbucket.org/tamtam-nl/tamtam-nuget-imageserver/src/eaddb1ac943fcaa9e7ef210ed5a5ccf630b8699 ...

  5. 蘑菇街TeamTalk编译连接过程中遇到的问题及解决方法(iOS)

    今天浏览博文的时候,“蘑菇街开源的即时通讯框架,包括iOS.Android.Mac.Windows客户端和后台 Github源码下载地址:https://github.com/mogujie/Team ...

  6. 进入OS前的两步之System tick

    OK,继续向操作系统迈进.由简入繁,先实现两个小功能.第一个是system tick,第二个是任务切换(PendSV).一个是操作系统的心跳,一个是操作系统的并发处理的具体实现. System tic ...

  7. session生命周期(一)

    Session存储在服务器端,一般为了防止在服务器的内存中(为了高速存取),Session在用户访问第一次访问服务器时创建,需要注意只有访问JSP.Servlet等程序时才会创建Session,只访问 ...

  8. ThinkPHP之OAuth2.0环境搭建

    几个比较好的超链接 1.http://www.tuicool.com/articles/u6beUju 2.http://leyteris.iteye.com/blog/1483403

  9. PHP常量详解:define和const的区别

    常量是一个简单值的标识符(名字).如同其名称所暗示的,在脚本执行期间该值不能改变(除了所谓的魔术常量,它们其实不是常量).常量默认为大小写敏感.通常常量标识符总是大写的. 可以用 define() 函 ...

  10. iOS开发——高级篇——iOS中如何选择delegate、通知、KVO(以及三者的区别)

      在开发IOS应用的时候,我们会经常遇到一个常见的问题:在不过分耦合的前提下,controllers[B]怎么进行通信.在IOS应用不断的出现三种模式来实现这种通信:1委托delegation2通知 ...