算法系列:kmp
作者: 阮一峰
日期: 2013年5月 1日
字符串匹配是计算机的基本任务之一。
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald
Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake
Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.

因为B与A不匹配,搜索词再往后移。
3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.

接着比较字符串和搜索词的下一个字符,还是相同。
5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.

因为空格与A不匹配,继续后移一位。
12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.

下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
(完)
文档信息
算法系列:kmp的更多相关文章
- 经典算法系列--kmp
前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导 ...
- 算法:KMP算法
算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...
- BF算法与KMP算法
BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...
- JAVA算法系列 冒泡排序
java算法系列之排序 手写冒泡 冒泡算是最基础的一个排序算法,简单的可以理解为,每一趟都拿i与i+1进行比较,两个for循环,时间复杂度为 O(n^2),同时本例与选择排序进行了比较,选择排序又叫直 ...
- JAVA算法系列 快速排序
java算法系列之排序 手写快排 首先说一下什么是快排,比冒泡效率要高,快排的基本思路是首先找到一个基准元素,比如数组中最左边的那个位置,作为基准元素key,之后在最左边和最右边设立两个哨兵,i 和 ...
- javascript实现数据结构与算法系列:栈 -- 顺序存储表示和链式表示及示例
栈(Stack)是限定仅在表尾进行插入或删除操作的线性表.表尾为栈顶(top),表头为栈底(bottom),不含元素的空表为空栈. 栈又称为后进先出(last in first out)的线性表. 堆 ...
- 三白话经典算法系列 Shell排序实现
山是包插入的精髓排序排序,这种方法,也被称为窄增量排序.因为DL.Shell至1959提出命名. 该方法的基本思想是:先将整个待排元素序列切割成若干个子序列(由相隔某个"增量"的元 ...
- Atitit s2018.6 s6 doc list on com pc.docx Atitit s2018.6 s6 doc list on com pc.docx Aitit algo fix 算法系列补充.docx Atiitt 兼容性提示的艺术 attilax总结.docx Atitit 应用程序容器化总结 v2 s66.docx Atitit file cms api
Atitit s2018.6 s6 doc list on com pc.docx Atitit s2018.6 s6 doc list on com pc.docx Aitit algo fi ...
- 【C#实现漫画算法系列】-判断 2 的乘方
微信上关注了算法爱好者这个公众号,有一个漫画算法系列的文章生动形象,感觉特别好,给大家推荐一下(没收过广告费哦),原文链接:漫画算法系列.也看到了许多同学用不同的语言来实现算法,作为一枚C#资深爱好的 ...
- 经典串匹配算法(KMP)解析
一.问题重述 现有字符串S1,求S1中与字符串S2完全匹配的部分,例如: S1 = "ababaababc" S2 = "ababc" 那么得到匹配的结果是5( ...
随机推荐
- Spinner
资源的方式添加 安卓中的下拉框 Spinner可以通过xml string中配置 <string-array name="spingarr"> <item> ...
- a版本冲刺第四天
队名:Aruba 队员: 黄辉昌 李陈辉 林炳锋 鄢继仁 张秀锋 章 鼎 学号 昨天完成的任务 今天做的任务 明天要做的任务 困难点 体会 408 完成学习Java从入门到精通基础篇 通读了构建 ...
- SpringBoot源码分析:spring的基本架构
在深入了解springboot之前,我们需要了解spring,springboot本身就是基于spring而构建:是微服务架构中一个比较流行的框架:类似spring提供了一套完整的微服务方案如spri ...
- php桥接设计模式
<?php //桥接模式 abstract class info{ protected $send=null; public function __construct($send){ $this ...
- 用U盘安装系统的好用的PE系统:通用PE V6.1下载
用U盘安装系统的好用的PE系统:通用PE V6.1下载 PE是一款用其他介质(我们最常用的是U盘)启动安装电脑系统的简易操作系统,在XP系统中 最经典的是扬州老毛桃出品的只有100多兆的XP内核的PE ...
- WebPack常用功能介绍
概述 Webpack是一款用户打包前端模块的工具.主要是用来打包在浏览器端使用的javascript的.同时也能转换.捆绑.打包其他的静态资源,包括css.image.font file.templa ...
- 适配iOS10以及Xcode8
现在在苹果的官网上,我们已经可以下载到Xcode8的GM版本了,加上9.14日凌晨,苹果就要正式推出iOS10系统的推送了,在此之际,iOS10的适配已经迫在眉睫啦,不知道Xcode8 beat版本, ...
- Android之layout_gravity与gravity解析
相信layout_gravity和gravity这两个属性一直困扰着很多人,很多初学者都分不清这两个属性有什么区别,以及怎样区分它们.它们中,有一个表示的是一个控件在父布局中的位置,而另一个表示的是一 ...
- DTD总结
DTD 可以检测 XNM 文档的结构是否正确,就好像文章中用来保证结构正确的语法规则一样. 引入 DTD 1.引入私有的 DTD 文件,URI 可以使相对地址或绝对地址 <!DOCTYPE 根元 ...
- Github.com上有哪些比较有趣的PHP项目?
链接就不贴了,可以在github上进行搜索.这里就不列举 symfony.laravel 这些大家都知道的项目了.只列举比较有意思的. swoole, C扩展实现的PHP异步并行网络通信框架,可以重新 ...