考场

乍一看都不可做

T1 算了半天样例,一直算出来 \(\frac{81}{400}\),直接丢了

T1 推了推发现是求最长连续 \(0\) 的数量,那就是线段树合并加上《玫瑰花精》

T3 完全不会。甚至不知道该状压还是乱搞

先敲了 T1 T3 两个暴力和 T3 完全图+边权相同的部分分,8 点多开始写 T2。结果出奇的顺利,9,00 就过了样例和测速(测速时发现线段树节点数忘 \(\times4\) 了,担心 MLE,换成了 merge 时不新建点的写法)。拍上后决定手模一些小数据,结果第一个就挂了。。。发现答案要和前缀 \(0\) 数+后缀 \(0\) 数取 \(\max\),暴力也没考虑,9.30 加上并过了自己造的小数据。

回头看 T1,还是没有想法。先加了个记忆化,又用分数类输出了一下样例,发现是 \(\frac{11}5\)???一直i疑惑到 10.00。交了T1 T3,发现编译器只有 C++11 gcc 8.2.0 一个选项,担心 T2 被卡常。造了链、菊花、二叉树的满数据,都在 0.3s 跑完了,感觉很稳。

res

rk4 20+100+20

T1 在求 \(\sum w_i\) 时没有模,导致算分母逆元时爆 LL 了,挂 25pts

T3 有完全图但边权不相等情况,挂 10pts

rk1 肖鸣孜 45+100+40

Hunter

考察了对期望的线性性本质的理解

要求的是在第一个猎人之前死的期望猎人数 \(+1\),即 \(\text{E}(\sum_{i=2}^nA_i)+1\),等于 \(\sum_{i=2}^n\text{E}(A_i)+1\),而每个猎人在第一个猎人之前死的期望是 \(\frac{w_i}{w_1+w_i}\times1\)。

code
const int N = 1e5+5, mod = 998244353;
int n;
LL a[N]; LL ans; LL Pow(LL x,LL y=mod-2)
{ LL res=1; for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod; return res; } signed main() {
read(n);
For(i,1,n) read(a[i]);
For(i,2,n) ans = (ans + a[i] * Pow(a[1]+a[i])) %mod;
write((ans+1)%mod);
return iocl();
}

Defence

线段树合并+线段树求最长连续 \(0\) 数

考场代码
const int N = 1e5+5;
int n,m,q;
vector<int> to[N]; int rt[N],pre[N],suf[N],ans[N]; #define ls(u) t[u].ch[0]
#define rs(u) t[u].ch[1]
#define mid ((l+r)>>1)
int ind;
struct Node { int l,r; int len() { return r-l-1; } };
bool operator < (Node x,Node y) { return x.len() < y.len(); }
struct Seg { int ch[2],ll,rr; Node mx; } t[N*4*18];
void up(int u) {
t[u].mx = max(t[ls(u)].mx,t[rs(u)].mx);
if( ls(u) && rs(u) ) ckmax(t[u].mx,Node{t[ls(u)].rr,t[rs(u)].ll});
t[u].ll = t[ ls(u)?ls(u):rs(u) ].ll, t[u].rr = t[ rs(u)?rs(u):ls(u) ].rr;
}
void insert(int &u,int l,int r,int p) {
if( !u ) u = ++ind;
if( l == r ) {
t[u].ll = t[u].rr = p, t[u].mx = {p,p};
return;
}
if( p <= mid ) insert(ls(u),l,mid,p);
else insert(rs(u),mid+1,r,p);
up(u);
}
int merge(int u,int v,int l,int r) {
if( !u || !v ) return u | v;
if( l == r ) return u;
ls(u) = merge(ls(u),ls(v),l,mid), rs(u) = merge(rs(u),rs(v),mid+1,r);
up(u); return u;
}
#undef ls
#undef rs
#undef mid void dfs(int u,int fa) {
for(int v : to[u]) if( v != fa ) {
dfs(v,u);
rt[u] = merge(rt[u],rt[v],0,m);
ckmin(pre[u],pre[v]), ckmax(suf[u],suf[v]);
}
if( suf[u] ) ans[u] = max(t[rt[u]].mx.len(),pre[u]-0-1+m-suf[u]-1);
else ans[u] = -1;
} signed main() {
// printf("%d\n",sizeof(t));
// return 0;
// freopen("b1.in","r",stdin);
// freopen("b1.out","w",stdout);
read(n,m,q); ++m;
For(i,1,n-1) {
int x,y; read(x,y);
to[x].pb(y), to[y].pb(x);
}
For(i,1,n) pre[i] = m, insert(rt[i],0,m,0), insert(rt[i],0,m,m);
while( q-- ) {
int x,y; read(x,y);
insert(rt[x],0,m,y);
ckmin(pre[x],y), ckmax(suf[x],y);
}
dfs(1,0);
For(i,1,n) write(ans[i]);
return iocl();
}

Connect

本质是要保留一条 \(1\) 到 \(n\) 的链,其他点与这条链只有一个交点,求删去边的最小权值和。

\(n\) 很小,考虑状压 DP。

设 \(f[s,i]\) 为当前考虑过的点集为 \(s\),链的结尾为 \(i\) 的保留,每次考虑添加一个点到链中或找一个联通块,使这个联通块中的点与这条链的交点为 \(i\)。具体看代码

code
const int N = 16;
int n,m;
int w[N][N]; int all,sum[1<<N],g[1<<N][N],f[1<<N][N]; signed main() {
read(n,m); all = (1<<(n--))-1;
For(i,1,m) {
int x,y,z; read(x,y,z); --x,--y;
w[x][y] = w[y][x] = z;
}
For(s,1,all) For(i,0,n) if( s & (1<<i) ) For(j,i+1,n) if( s & (1<<j) )
sum[s] += w[i][j]; // sum[s]: 集合s中内部连边的和
For(s,1,all) For(i,0,n) For(j,0,n) if( s & (1<<j) ) g[s][i] += w[i][j];
// g[s,i]: 集合s与点i连边的和
memset(f,0xcf,sizeof f);
f[1][0] = 0;
For(s,1,all) For(i,0,n) if( f[s][i] >= 0 ) {
For(j,0,n) if( !(s & (1<<j)) ) // 点j接到链上
ckmax(f[s|(1<<j)][j],f[s][i]+w[i][j]);
for(int ss = all^s, t = ss; t; t = (t-1)&ss) // 联通块t接到i上
ckmax(f[s|t][i],f[s][i]+g[t][i]+sum[t]);
}
write(sum[all]-f[all][n]);
return iocl();
}

20210808 Hunter,Defence,Connect的更多相关文章

  1. 8.8考试总结(NOIP模拟33)[Hunter·Defence·Connect]

    无法逃避的是自我,而无法挽回的是过去. 前言 还算可以,不过 T1 少 \(\bmod\) 了一下挂了 25pts,T2 没看清题面挂了 27pts. 下回注意吧.. T1 Hunter 解题思路 感 ...

  2. Connect() 2016 大会的主题 ---微软大法好

    文章首发于微信公众号"dotnet跨平台",欢迎关注,可以扫页面左面的二维码. 今年 Connect 大会的主题是 Big possibilities. Bold technolo ...

  3. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 1 Keynote: Scott Hunter

    “.Net 社区虚拟大会”(dotnetConf) 2016 今天凌晨在Channel9 上召开,在Scott Hunter的30分钟的 Keynote上没有特别的亮点,所讲内容都是 微软“.Net社 ...

  4. IdentityServer4 使用OpenID Connect添加用户身份验证

    使用IdentityServer4 实现OpenID Connect服务端,添加用户身份验证.客户端调用,实现授权. IdentityServer4 目前已更新至1.0 版,在之前的文章中有所介绍.I ...

  5. 2003-Can't connect to mysql server on localhost (10061)

    mysql数据库出现2003-Can't connect to mysql server on localhost (10061)问题 解决办法:查看wampserver服务器是否启动,如果没有启动启 ...

  6. Error connecting to database [Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (13)]

    参照 http://stackoverflow.com/questions/4448467/cant-connect-to-local-mysql-server-through-socket-var- ...

  7. HTTP Method详细解读(`GET` `HEAD` `POST` `OPTIONS` `PUT` `DELETE` `TRACE` `CONNECT`)

    前言 HTTP Method的历史: HTTP 0.9 这个版本只有GET方法 HTTP 1.0 这个版本有GET HEAD POST这三个方法 HTTP 1.1 这个版本是当前版本,包含GET HE ...

  8. IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习保护API

    IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习之保护API. 使用IdentityServer4 来实现使用客户端凭据保护ASP.N ...

  9. Connect to the DSP on C6A8168/DM8168/DM8148 using CCS

    转自ti-wiki  这份wiki,我曾经就收藏过,但是没有加以重视,以至于绕了一大圈的ccs开发环境的配置,现在正式收藏于自己的博客中...总结良多啊 Connecting to DSP on C6 ...

随机推荐

  1. 如何用C++封装一个简单的数据流操作类(附源码),从而用于网络上的数据传输和解析?

    历史溯源 由于历史原因,我们目前看到的大部分的网络协议都是基于ASCII码这种纯文本方式,也就是基于字符串的命令行方式,比如HTTP.FTP.POP3.SMTP.Telnet等.早期操作系统UNIX( ...

  2. 18Oracle入门

    1 Oracle的服务 Oracle的监听服务:OralceOraDB12Home1TNSListener 需要通过程序链接数据库进行开发的时候,此服务必须打开,如果只是在本机使用,此服务可不启动 O ...

  3. OpenGL学习笔记(二)画三角形

    目录 渲染管线(Graphics Pipeline) 编码实现 顶点数据 顶点缓冲对象(VBO) 顶点着色器 编译着色器 片段着色器 着色器程序 链接顶点属性 顶点数组对象 最终绘制三角形 索引缓冲对 ...

  4. pwnable.kr之simple Login

    pwnable.kr之simple Login 懒了几天,一边看malloc.c的源码,一边看华庭的PDF.今天佛系做题,到pwnable.kr上打开了simple Login这道题,但是这道题个人觉 ...

  5. js遍历终极大法--再也不用苦逼的for循环了

    while循环 while后面跟循环条件和执行语句,只要满足条件,就会一直执行里面的执行 var i = 0 while(i<10){ console.log(i) i++ } do...whi ...

  6. vue 快速入门 系列 —— vue-cli 上

    其他章节请看: vue 快速入门 系列 Vue CLI 4.x 上 在 vue loader 一文中我们已经学会从零搭建一个简单的,用于单文件组件开发的脚手架:本篇,我们将全面学习 vue-cli 这 ...

  7. Android Jetpack 架构组件最佳实践之“网抑云”APP

    背景 近几年,Android 相关的新技术层出不穷.往往这个技术还没学完,下一个新技术又出来了.很多人都是一脸黑人问号? 不少开发者甚至开始哀嚎:"求求你们别再创造新技术了,我们学不动了!& ...

  8. 我的大学Android开发学习之路——从开始到微信/支付宝/抖音Offer

    前言 笔者2016年高考考入华中科技大学计算机科学与技术专业. 2017年底(大二寒假)拿到今日头条(字节跳动)深圳研发中心Android开发实习生Offer,在深圳研发中心实习至2018年3月. 2 ...

  9. CYPEESS USB3.0程序解读之---SPI读写

    前面已经解读了GPIO以及同步FIFO操作,下面我们看一个SPI读写的例子,它是主程序命令从SPI中读写一些数据. SPI传输子程序看一下: 页地址,字节计数,缓冲区,读写标志 因为只能一页一页的读或 ...

  10. 基于ssm的电影售票选座管理系统基于Java的电影网站的网页设计与制作源码

    注意:此项目只截图部分功能,可评论区咨询查看项目全部功能演示! 1.开发环境 开发语言: 后台框架:SSM(Spring+SpringMVC+Mybatis) 前端技术:HTML+CSS+JavaSc ...