考场

乍一看都不可做

T1 算了半天样例,一直算出来 \(\frac{81}{400}\),直接丢了

T1 推了推发现是求最长连续 \(0\) 的数量,那就是线段树合并加上《玫瑰花精》

T3 完全不会。甚至不知道该状压还是乱搞

先敲了 T1 T3 两个暴力和 T3 完全图+边权相同的部分分,8 点多开始写 T2。结果出奇的顺利,9,00 就过了样例和测速(测速时发现线段树节点数忘 \(\times4\) 了,担心 MLE,换成了 merge 时不新建点的写法)。拍上后决定手模一些小数据,结果第一个就挂了。。。发现答案要和前缀 \(0\) 数+后缀 \(0\) 数取 \(\max\),暴力也没考虑,9.30 加上并过了自己造的小数据。

回头看 T1,还是没有想法。先加了个记忆化,又用分数类输出了一下样例,发现是 \(\frac{11}5\)???一直i疑惑到 10.00。交了T1 T3,发现编译器只有 C++11 gcc 8.2.0 一个选项,担心 T2 被卡常。造了链、菊花、二叉树的满数据,都在 0.3s 跑完了,感觉很稳。

res

rk4 20+100+20

T1 在求 \(\sum w_i\) 时没有模,导致算分母逆元时爆 LL 了,挂 25pts

T3 有完全图但边权不相等情况,挂 10pts

rk1 肖鸣孜 45+100+40

Hunter

考察了对期望的线性性本质的理解

要求的是在第一个猎人之前死的期望猎人数 \(+1\),即 \(\text{E}(\sum_{i=2}^nA_i)+1\),等于 \(\sum_{i=2}^n\text{E}(A_i)+1\),而每个猎人在第一个猎人之前死的期望是 \(\frac{w_i}{w_1+w_i}\times1\)。

code
const int N = 1e5+5, mod = 998244353;
int n;
LL a[N]; LL ans; LL Pow(LL x,LL y=mod-2)
{ LL res=1; for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod; return res; } signed main() {
read(n);
For(i,1,n) read(a[i]);
For(i,2,n) ans = (ans + a[i] * Pow(a[1]+a[i])) %mod;
write((ans+1)%mod);
return iocl();
}

Defence

线段树合并+线段树求最长连续 \(0\) 数

考场代码
const int N = 1e5+5;
int n,m,q;
vector<int> to[N]; int rt[N],pre[N],suf[N],ans[N]; #define ls(u) t[u].ch[0]
#define rs(u) t[u].ch[1]
#define mid ((l+r)>>1)
int ind;
struct Node { int l,r; int len() { return r-l-1; } };
bool operator < (Node x,Node y) { return x.len() < y.len(); }
struct Seg { int ch[2],ll,rr; Node mx; } t[N*4*18];
void up(int u) {
t[u].mx = max(t[ls(u)].mx,t[rs(u)].mx);
if( ls(u) && rs(u) ) ckmax(t[u].mx,Node{t[ls(u)].rr,t[rs(u)].ll});
t[u].ll = t[ ls(u)?ls(u):rs(u) ].ll, t[u].rr = t[ rs(u)?rs(u):ls(u) ].rr;
}
void insert(int &u,int l,int r,int p) {
if( !u ) u = ++ind;
if( l == r ) {
t[u].ll = t[u].rr = p, t[u].mx = {p,p};
return;
}
if( p <= mid ) insert(ls(u),l,mid,p);
else insert(rs(u),mid+1,r,p);
up(u);
}
int merge(int u,int v,int l,int r) {
if( !u || !v ) return u | v;
if( l == r ) return u;
ls(u) = merge(ls(u),ls(v),l,mid), rs(u) = merge(rs(u),rs(v),mid+1,r);
up(u); return u;
}
#undef ls
#undef rs
#undef mid void dfs(int u,int fa) {
for(int v : to[u]) if( v != fa ) {
dfs(v,u);
rt[u] = merge(rt[u],rt[v],0,m);
ckmin(pre[u],pre[v]), ckmax(suf[u],suf[v]);
}
if( suf[u] ) ans[u] = max(t[rt[u]].mx.len(),pre[u]-0-1+m-suf[u]-1);
else ans[u] = -1;
} signed main() {
// printf("%d\n",sizeof(t));
// return 0;
// freopen("b1.in","r",stdin);
// freopen("b1.out","w",stdout);
read(n,m,q); ++m;
For(i,1,n-1) {
int x,y; read(x,y);
to[x].pb(y), to[y].pb(x);
}
For(i,1,n) pre[i] = m, insert(rt[i],0,m,0), insert(rt[i],0,m,m);
while( q-- ) {
int x,y; read(x,y);
insert(rt[x],0,m,y);
ckmin(pre[x],y), ckmax(suf[x],y);
}
dfs(1,0);
For(i,1,n) write(ans[i]);
return iocl();
}

Connect

本质是要保留一条 \(1\) 到 \(n\) 的链,其他点与这条链只有一个交点,求删去边的最小权值和。

\(n\) 很小,考虑状压 DP。

设 \(f[s,i]\) 为当前考虑过的点集为 \(s\),链的结尾为 \(i\) 的保留,每次考虑添加一个点到链中或找一个联通块,使这个联通块中的点与这条链的交点为 \(i\)。具体看代码

code
const int N = 16;
int n,m;
int w[N][N]; int all,sum[1<<N],g[1<<N][N],f[1<<N][N]; signed main() {
read(n,m); all = (1<<(n--))-1;
For(i,1,m) {
int x,y,z; read(x,y,z); --x,--y;
w[x][y] = w[y][x] = z;
}
For(s,1,all) For(i,0,n) if( s & (1<<i) ) For(j,i+1,n) if( s & (1<<j) )
sum[s] += w[i][j]; // sum[s]: 集合s中内部连边的和
For(s,1,all) For(i,0,n) For(j,0,n) if( s & (1<<j) ) g[s][i] += w[i][j];
// g[s,i]: 集合s与点i连边的和
memset(f,0xcf,sizeof f);
f[1][0] = 0;
For(s,1,all) For(i,0,n) if( f[s][i] >= 0 ) {
For(j,0,n) if( !(s & (1<<j)) ) // 点j接到链上
ckmax(f[s|(1<<j)][j],f[s][i]+w[i][j]);
for(int ss = all^s, t = ss; t; t = (t-1)&ss) // 联通块t接到i上
ckmax(f[s|t][i],f[s][i]+g[t][i]+sum[t]);
}
write(sum[all]-f[all][n]);
return iocl();
}

20210808 Hunter,Defence,Connect的更多相关文章

  1. 8.8考试总结(NOIP模拟33)[Hunter·Defence·Connect]

    无法逃避的是自我,而无法挽回的是过去. 前言 还算可以,不过 T1 少 \(\bmod\) 了一下挂了 25pts,T2 没看清题面挂了 27pts. 下回注意吧.. T1 Hunter 解题思路 感 ...

  2. Connect() 2016 大会的主题 ---微软大法好

    文章首发于微信公众号"dotnet跨平台",欢迎关注,可以扫页面左面的二维码. 今年 Connect 大会的主题是 Big possibilities. Bold technolo ...

  3. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 1 Keynote: Scott Hunter

    “.Net 社区虚拟大会”(dotnetConf) 2016 今天凌晨在Channel9 上召开,在Scott Hunter的30分钟的 Keynote上没有特别的亮点,所讲内容都是 微软“.Net社 ...

  4. IdentityServer4 使用OpenID Connect添加用户身份验证

    使用IdentityServer4 实现OpenID Connect服务端,添加用户身份验证.客户端调用,实现授权. IdentityServer4 目前已更新至1.0 版,在之前的文章中有所介绍.I ...

  5. 2003-Can't connect to mysql server on localhost (10061)

    mysql数据库出现2003-Can't connect to mysql server on localhost (10061)问题 解决办法:查看wampserver服务器是否启动,如果没有启动启 ...

  6. Error connecting to database [Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (13)]

    参照 http://stackoverflow.com/questions/4448467/cant-connect-to-local-mysql-server-through-socket-var- ...

  7. HTTP Method详细解读(`GET` `HEAD` `POST` `OPTIONS` `PUT` `DELETE` `TRACE` `CONNECT`)

    前言 HTTP Method的历史: HTTP 0.9 这个版本只有GET方法 HTTP 1.0 这个版本有GET HEAD POST这三个方法 HTTP 1.1 这个版本是当前版本,包含GET HE ...

  8. IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习保护API

    IdentityServer4 ASP.NET Core的OpenID Connect OAuth 2.0框架学习之保护API. 使用IdentityServer4 来实现使用客户端凭据保护ASP.N ...

  9. Connect to the DSP on C6A8168/DM8168/DM8148 using CCS

    转自ti-wiki  这份wiki,我曾经就收藏过,但是没有加以重视,以至于绕了一大圈的ccs开发环境的配置,现在正式收藏于自己的博客中...总结良多啊 Connecting to DSP on C6 ...

随机推荐

  1. phpcms开发使用

    二次开发入口文件: 1.dirname(__FILE___) 函数返回的是脚本所在在的路径 2.__FILE__ 当前运行文件的完整路径和文件名.如果用在被包含文件中,则返回被包含的文件名. 3.DI ...

  2. 复杂多变场景下的Groovy脚本引擎实战

    一.前言 因为之前在项目中使用了Groovy对业务能力进行一些扩展,效果比较好,所以简单记录分享一下,这里你可以了解: 为什么选用Groovy作为脚本引擎 了解Groovy的基本原理和Java如何集成 ...

  3. centos7 安装mariadb、"systemctl status mariadb.service" and "journalctl -xe" for details

    centos7 mariadb 安装 也可解决此错误:ob for mariadb.service failed because the control process exited with err ...

  4. ms17-010

    永恒之蓝和ms17-010简介: 永恒之蓝(EternalBLUE)"是Shadow Brokers(影子经纪人)黑客组织公布的一款黑客工具,该工具利用的漏洞也被称为MS17-010漏洞,M ...

  5. 第2篇-JVM虚拟机这样来调用Java主类的main()方法

    在前一篇 第1篇-关于JVM运行时,开篇说的简单些 中介绍了call_static().call_virtual()等函数的作用,这些函数会调用JavaCalls::call()函数.我们看Java类 ...

  6. idea启动桌面出现三个日志文件解决办法

    idea一启动就出现上图三个日志文件,soapui是一个接口测试工具插件,在setting中搜索soapui,一般不需要,卸载掉就可以了.

  7. Vue实现多文件上传功能(前端 + 后端代码)

    本人业余前端开发,因为公司(很坑)觉得我很牛逼,所以让我前后端一起玩,无奈的我只能磕磕碰碰的研究起了vue. 开发项目的时候,用到文件上传的功能很常见,包括单文件上传和多文件上传,上传各种类型的文件. ...

  8. Haskell Command-line Application Building

    Haskeline Package Haskeline provides a user interface for line input in command-line programs. This ...

  9. Http协议中的CharacterEncoding、Content-Encoding和Transfer-Encoding

    https://www.cnblogs.com/jinzhiming/p/5765672.html https://www.jianshu.com/p/e918a65b617f https://www ...

  10. Longhorn 企业级云原生分布式容器存储-券(Volume)和节点(Node)

    内容来源于官方 Longhorn 1.1.2 英文技术手册. 系列 Longhorn 是什么? Longhorn 云原生分布式块存储解决方案设计架构和概念 Longhorn 企业级云原生容器存储解决方 ...