前言

由于本人比较拉所以看起来很啰嗦,将就看就好。

题目大意

\(n\)种包,每个包里面有一大一小两个球,选小球的代价是\(1\),大球的代价是\(2\),可以都不选,若一次性买两个包,则可以优惠\(1\)元。设总代价为\(k\),求对于\(k\in[1,m]\),选的方案数。

解题思路

设二元生成函数\([z^nt^k]\)表示选\(n\)种包,代价为\(k\)的方案数。

根据题意,答案为

\[[z^nt^k]\frac1{1-[z(1+t+t^2)+z^2(t+2t^2+t^3)]}
\]

尝试裂项化为\(\sum\frac1{1-az}\)形式,以便消去一个元\([z^n]\)。我们提出分母,将其因式分解,设:

\[1-z(1+t+t^2)-z^2(t+2t^2+t^3)=(1-az)(1-bz)
\]

不难得到\(a=(1+t)^2,b=-t\),根据

\[\frac1{(1-az)(1-bz)}=\frac 1 {a-b}(\frac{a}{1-az}-\frac{b}{1-bz})
\]

裂项得到原式等于

\[[z^nt^k]\frac1{1+3t+t^2}[\frac{(1+t)^2}{1-(1+t)^2z}+\frac t {1 + tz}]
\]

大家都知道\([z^n]\frac1{1-az}=a^n\),所以可以愉快地扔掉\([z^n]\)了,化为

\[[t^k]\frac{(1+t)^{2n+2}+(-1)^nt^{n+1}}{1+3t+t^2}
\]

不如先化掉分子吧

\[[t^k]\frac{\binom {2n+2}{k}+(-1)^n[k=n+1]}{1+3t+t^2}
\]

\[F(t)=\binom {2n+2}{k}+(-1)^n[k=n+1]
\]

则所求变为

\[G(t)=\frac{F(t)}{1+3t+t^2}
\]

得到

\[(1+3t+t^2)G(t)=F(t)
\]

拆开

\[G(t)=F(t)-3tG(t)-t^2G(t)
\]

\[g_k=f_k-3g_{k-1}-g_{k-2}
\]

于是可以\(O(m)\)递推做了,此题就做完了。

后记

奇怪的是出题人的\(\sum m\)只出到了\(3e4\),所以盲猜此题出题人想到的是较劣的做法。

以及居然行末要有空格才能过,HDU没救了

Taught by GuidingStar

HDU ACM 8.13 T2 的 O(m)做法的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  9. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. Linux学习 - ACL权限

    一.ACL权限简介 ACL权限是为了防止权限不够用的情况,一般的权限有所有者.所属组.其他人这三种,当这三种满足不了我们的需求的时候就可以使用ACL权限 二.ACL权限开启 1 查看当前系统分区 df ...

  2. java静态方法调用非静态方法

    我们都知道,静态static方法中不能调用非静态non-static方法,准确地说是不能直接调用non-static方法.但是可以通过将一个对象的引用传入static方法中,再去调用该对象的non-s ...

  3. OSGi系列 - 使用Eclipse查看Bundle源码

    使用Eclipse开发OSGi Bundle时,会发现有很多现成的Bundle可以用.但如何使用这些Bundle呢?除了上网搜索查资料外,阅读这些Bundle的源码也是一个很好的方法. 本文以org. ...

  4. 【Java 多线程】Java线程池类ThreadPoolExecutor、ScheduledThreadPoolExecutor及Executors工厂类

    Java中的线程池类有两个,分别是:ThreadPoolExecutor和ScheduledThreadPoolExecutor,这两个类都继承自ExecutorService.利用这两个类,可以创建 ...

  5. Linux提取命令grep 有这一篇就够了

    grep作为linux中使用频率非常高的一个命令,和cut命令一样都是管道命令中的一员.并且其功能也是对一行数据进行分析,从分析的数据中取出我们想要的数据.也就是相当于一个检索的功能.当然了,grep ...

  6. 【代码优化】List.remove() 剖析

    一.犯错经历 1.1 故事背景 最近有个需求大致的背景类似: 我已经通过一系列的操作拿到一批学生的考试成绩数据,现在需要筛选成绩大于 95 分的学生名单. 善于写 bug 的我,三下五除二完成了代码的 ...

  7. 【dva】dva的基本用法

    services 该文件夹用于存储services,里面的内容为接口调用函数,记得将数据返回.(request是我自己封装函数,也可以用axios原生的函数) const finishTask = { ...

  8. NepCTF pwn writeup

    上周抽时间打了nepnep举办的CTF比赛,pwn题目出的挺不错的,适合我这种只会一点点选手做,都可以学到新东西. [签到] 送你一朵小红花 64位程序,保护全开. 程序会在buf[2]处留下一个da ...

  9. HTTPS 握手过程理解

    转自https://www.jianshu.com/p/a3a25c6627ee https://blog.csdn.net/xingtian713/article/details/11953057 ...

  10. IDEA结合mybatis插件自动生成代码

    pom文件 添加插件 <plugin> <groupId>org.mybatis.generator</groupId> <artifactId>myb ...