前言

由于本人比较拉所以看起来很啰嗦,将就看就好。

题目大意

\(n\)种包,每个包里面有一大一小两个球,选小球的代价是\(1\),大球的代价是\(2\),可以都不选,若一次性买两个包,则可以优惠\(1\)元。设总代价为\(k\),求对于\(k\in[1,m]\),选的方案数。

解题思路

设二元生成函数\([z^nt^k]\)表示选\(n\)种包,代价为\(k\)的方案数。

根据题意,答案为

\[[z^nt^k]\frac1{1-[z(1+t+t^2)+z^2(t+2t^2+t^3)]}
\]

尝试裂项化为\(\sum\frac1{1-az}\)形式,以便消去一个元\([z^n]\)。我们提出分母,将其因式分解,设:

\[1-z(1+t+t^2)-z^2(t+2t^2+t^3)=(1-az)(1-bz)
\]

不难得到\(a=(1+t)^2,b=-t\),根据

\[\frac1{(1-az)(1-bz)}=\frac 1 {a-b}(\frac{a}{1-az}-\frac{b}{1-bz})
\]

裂项得到原式等于

\[[z^nt^k]\frac1{1+3t+t^2}[\frac{(1+t)^2}{1-(1+t)^2z}+\frac t {1 + tz}]
\]

大家都知道\([z^n]\frac1{1-az}=a^n\),所以可以愉快地扔掉\([z^n]\)了,化为

\[[t^k]\frac{(1+t)^{2n+2}+(-1)^nt^{n+1}}{1+3t+t^2}
\]

不如先化掉分子吧

\[[t^k]\frac{\binom {2n+2}{k}+(-1)^n[k=n+1]}{1+3t+t^2}
\]

\[F(t)=\binom {2n+2}{k}+(-1)^n[k=n+1]
\]

则所求变为

\[G(t)=\frac{F(t)}{1+3t+t^2}
\]

得到

\[(1+3t+t^2)G(t)=F(t)
\]

拆开

\[G(t)=F(t)-3tG(t)-t^2G(t)
\]

\[g_k=f_k-3g_{k-1}-g_{k-2}
\]

于是可以\(O(m)\)递推做了,此题就做完了。

后记

奇怪的是出题人的\(\sum m\)只出到了\(3e4\),所以盲猜此题出题人想到的是较劣的做法。

以及居然行末要有空格才能过,HDU没救了

Taught by GuidingStar

HDU ACM 8.13 T2 的 O(m)做法的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  9. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. redis入门到精通系列(四):Jedis--使用java操作redis详解

    (一)前言 如果不把数据库和后端语言联系起来,就起不到数据库应该要起到的作用.Java语言通过JDBC操作mysql,用Jedis操作redis.当然了,java操作redis的方式不止jedis一种 ...

  2. spring下春注解的声明式事务控制

    package com.hope.test;import com.hope.domain.Account;import com.hope.service.IAccountService;import ...

  3. 【C/C++】two pointers/归并排序/原理/理解/实现/算法笔记4.6

    1.two pointers 思路:对序列进行扫描的时候,根据序列本身的特性用两个下标i和j对序列进行扫描,从而降低算法复杂度. ·例1 在递增序列中找a + b = M while (i<j) ...

  4. AI 2021 年度报告

    建议大伙有空还是自己亲自读一下,虽然有点长,188页ppt. https://docs.google.com/presentation/d/1bwJDRC777rAf00Drthi9yT2c9b0Ma ...

  5. 攻击科普:DDos

    目录 一.DDoS 攻击究竟是什么? 二.DDoS 攻击多少G是什么意思? 二.DDoS攻击种类 ICMP Flood UDP Flood NTP Flood SYN Flood CC攻击 DNS Q ...

  6. <转>Hadoop入门总结

    转自:http://www.cnblogs.com/skyme/archive/2012/06/01/2529855.html 第1章 引言 1.1 编写目的 对关于hadoop的文档及资料进行进一步 ...

  7. 使用 Nocalhost 开发 Kubernetes 中的 APISIX Ingress Controller

    本文作者:黄鑫鑫 - Nocalhost 项目核心开发者 腾讯云 CODING DevOps 研发工程师.硕士毕业于中山大学数据科学与计算机学院,曾负责过平安云主机及国家超算中心容器云平台等相关业务, ...

  8. String类源码分析

    1.String类注释说明 /** * The {@code String} class represents character strings. All * string literals in ...

  9. 微信小程序项目使用npm安装vant-weapp的正确步骤,简单易懂!!

    微信小程序项目使用npm安装vant-weapp的正确步骤 1.在当前小程序项目目录npm init -y 构建npm项目 2.运行命令 npm install vant-weapp -S --pro ...

  10. [BUUCTF]REVERSE——[2019红帽杯]easyRE

    [2019红帽杯]easyRE 附件 步骤: ida载入,没有main函数,就先检索了程序里的字符串 发现了base64加密的特征字符串,双击you found me跟进,找到了调用它的函数,函数很长 ...