题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ’s farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field — that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ’s farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

农民约翰已经注意到他的奶牛经常在附近的田野之间移动。考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛,而且是为了从附近的田地里去吃草的奶牛。

具体来说,FJ的农场由N块田野构成(1 <= n <= 100,000),每两块田野之间有一条无向边连接(总共n-1条边)。FJ设计了农场,任何两个田野i和j之间,有且只有一条路径连接i和j。第 i块田野是C(i)头牛的住所,尽管奶牛们有时会通过k条路到达其他不同的田野(1<=k<=20)。

FJ想在每块田野上种上够M(i)头奶牛吃的草。M(i)指能从其他点经过最多k步就能到达这个点的奶牛的个数。

现给出FJ的每一个田野的奶牛的数目,请帮助FJ计算每一块田野的M(i)。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

第一行:n和k;

后面n-1行:i和j(两块田野);

之后n行:1..n每一块的C(i);

输出格式:

  • Lines 1..N: Line i should contain the value of M(i).

n行:每行M(i);//i:1..2

输入输出样例

输入样例#1: 复制

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6

输出样例#1: 复制

15
21
16
10
8
11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

题目简述:给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

思路

树型dp + 简单容斥原理

  • 用$f[i][j]$表示距节点i的距离小于等于j的所有节点的权值和,即牛的数量
  • $son[i]$表示i的子节点数
  • 可以想到,将此状态转移至与自己连通的v节点的$f[v][j-1]$中,即 $f[i][j]=f[v][j-1]+c[i]$

但是,这样会有一部分重复计算。因为$f[v][j-1]$中还包括了点i与点i距离小于等于j-2的点

  • 只要再减掉重复位置,即$f[i][j-2]*(son[i]-1)$

$$f[i][j]=f[s][j-1]-f[i][j-2]*(son[i]-1)$$

代码

#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register int
using namespace std;
const int maxn=1e5+50;
inline int read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
struct data {
int to,nxt;
}edge[210001]; int head[maxn],tot;
int f[maxn][21],sons[maxn];
int n,k;
inline void add(int a,int b) {
edge[++tot].to=b;
edge[tot].nxt=head[a];
head[a]=tot;
edge[++tot].to=a;
edge[tot].nxt=head[b];
head[b]=tot;
sons[a]++; sons[b]++;
}
int main() {
re i,j,s;
n=read(),k=read();
int a,b;
for(i=1;i<n;++i) {
a=read(),b=read();
add(a,b);
}
for(i=1;i<=n;++i) f[i][0]=read();
for(j=1;j<=k;++j) for(i=1;i<=n;++i){
for(s=head[i];s;s=edge[s].nxt) f[i][j]+=f[edge[s].to][j-1];
if(j>1) f[i][j]-=(sons[i]-1)*f[i][j-2];
else f[i][1]+=f[i][0];
}
for(i=1;i<=n;++i) printf("%d\n",f[i][k]);
return 0;
}

【题解】Luogu p3047 [USACO12FEB]附近的牛Nearby Cows 树型dp的更多相关文章

  1. LUOGU P3047 [USACO12FEB]附近的牛Nearby Cows

    传送门 解题思路 树形dp,看到数据范围应该能想到是O(nk)级别的算法,进而就可以设出dp状态,dp[x][j]表示以x为根的子树,距离它为i的点的总和,第一遍dp首先自底向上,dp出每个节点的子树 ...

  2. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. P3047 [USACO12FEB]附近的牛Nearby Cows

    https://www.luogu.org/problemnew/show/P304 1 #include <bits/stdc++.h> 2 #define up(i,l,r) for( ...

  4. luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp

    $k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...

  5. LuoguP3047 [USACO12FEB]附近的牛Nearby Cows(树形DP,容斥)

    \[f[u][step] = \begin{cases} C[u] & step = 0 \\ (\sum{f[v][step - 1]}) - f[u][step - 2] \cdot (d ...

  6. 树形DP【洛谷P3047】 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 农民约翰已经注意到他的奶牛经常在附近的田野之间移动.考虑到这一点,他想在每一块土地上种上足够的草,不仅是为了最初在这片土地上的奶牛, ...

  7. 【洛谷3047】[USACO12FEB]附近的牛Nearby Cows

    题面 题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into acc ...

  8. [USACO12FEB]附近的牛Nearby Cows

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  9. 【[USACO12FEB]附近的牛Nearby Cows】

    我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...

随机推荐

  1. 使用TK框架中selectByPrimaryKey

    使用TK框架中selectByPrimaryKey(Object key),需要注意要在entity里注明哪个字段是主键,否则会不知道哪个是PrimaryKey会随机一个字段就报错. 如下: 引入 i ...

  2. Zabbix 5.0 优化建议

    Blog:博客园 个人 在使用Zabbix过程中,正确的调整Zabbix系统,使之保持高性能是非常重要的,能够充分利用硬件资源,监控更多主机和性能指标. 硬件 关于zabbix server端硬件的建 ...

  3. Linux常见错误解决办法

    1. 程序运行的一些基础知识 1. 编译程序时去哪找头文件? 系统目录:就是交叉编译工具链里的某个 include 目录:也可以自己指定:编译时用 " -I dir "选项指定. ...

  4. istioctl命令整理

    显示配置文件中的差异 istioctl profile diff default demo 显示对应配置的profile istioctl profile dump demo 显示可用的配置 isti ...

  5. [bug] org.apache.ibatis.binding.BindingException: Invalid bound statement (not found)

    问题 原因不明,按参考文章中的做法,加了空格,clean后解决 参考 http://www.qishunwang.net/news_show_7922.aspx https://www.cnblogs ...

  6. MergingSort

    递归排序的两种实现 <script type="text/javascript"> //归并排序(递归实现) //思想:堆排序利用了完全二叉树的性质,但是比较麻烦 // ...

  7. 查看 swappiness 值

    Swap的使用频率  发表于 2017-06-02 |  分类于 Linux |  评论数: 通过调整swappiness的值, 可以调整系统使用 swap 的频率 该值越小, 表示越大限度的使用物理 ...

  8. ltp

    1.查找文件 find / -name 'filename'   1 2.查找目录 find / -name 'path' -type d 1 3.查找内容 # find .| xargs grep ...

  9. Prometheus 通过 consul 实现自动服务发现

    1.Consul 介绍 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册.服务发现和配置管理的功能.Consul 提供服务注册/发现.健康检查.Key/Valu ...

  10. Linux 性能监控工具