洛谷P3267.侦察守卫
题目大意
一颗 \(n(1\leq n\leq 5\times 10^5)\) 个节点的树,在某一点 \(i\) 花费 \(w_{i}(w_{i}\leq 1000)\) 放置一个侦察守卫后可以监视到所有到 \(i\) 的距离 \(\leq d(d\leq 20)\) 的点, 有 \(m(m\leq n)\)个给定的关键节点需要监视,求能够监视到全部 \(m\) 个节点所需要的最小花费。
思路
设 \(f[i,x]\) 为监视到以 \(i\) 为根的子树中的全部关键点,并且可以向上监视到距离不小于 \(i\) 的节点的最小花费; \(g[i,x]\) 为至少监视到了以 \(i\) 为根的子树中的全部的与 \(i\) 的距离 \(\geq x\) 的关键点所需要的最小花费。在合并子树的过程中,对于 \(i\) 的每一个儿子 \(j\) ,我们可以得到:
\]
\]
此外,由我们对状态的定义,显然有:
\]
\]
对于初始值,一开始先将所有 \(f\) 初始为 \(inf\) 。考虑到每一个子树一开始只有一个根节点 \(i\) ,于是,如果 \(i\) 是关键点, 那么 \(g[i,0]=f[i,0]=w_{i}\) ,否则, \(g[i,0]=f[i,0]=0\) ,因为此时 \(g\) 与 \(f\) 都恰好表示仅考虑节点 \(i\) 时的情况。如果 \(x\neq 0\) ,因为要向上监视,所以此处必须有一个侦察守卫,所以对于所有 \(1\leq x\leq d\) , \(f[i,x]=w_{i}\) 。
在每次与一个子树合并时,要先计算 \(f\) ,后计算 \(g\) 。因为 \(f\) 的转移方程中需要用到一个尚未与新的子树合并的 \(g\) 。此外由于 \(g[i,0]\) 不能通过转移方程得到,每次合并时计算完 \(f\) 后,需要令 \(g[i,0]=f[i,0]\) 。复杂度 \(O(nd)\) 。
代码
#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
#define all(x) x.begin(),x.end()
//#define int LL
//#define lc p*2+1
//#define rc p*2+2
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#pragma warning(disable : 4996)
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
const double eps = 1e-8;
const LL MOD = 1000000007;
const LL mod = 998244353;
const int maxn = 500010;
vector<int>G[maxn];
int N, D, M, W[maxn];
bool key[maxn];
int f[maxn][25], g[maxn][25];
void add_edge(int from, int to)
{
G[from].push_back(to);
G[to].push_back(from);
}
void dfs(int v, int p)
{
if (key[v])
f[v][0] = g[v][0] = W[v];
else
f[v][0] = g[v][0] = 0;
for (int i = 1; i <= D; i++)
f[v][i] = W[v];
for (int i = 0; i < G[v].size(); i++)
{
int to = G[v][i];
if (to == p)
continue;
dfs(to, v);
for (int j = 0; j <= D; j++)
f[v][j] = min(f[v][j] + g[to][j], f[to][j + 1] + g[v][j + 1]);
for (int j = D; j >= 0; i--)
f[v][j] = min(f[v][j], f[v][j + 1]);
g[v][0] = f[v][0];
for (int j = 1; j <= D; j++)
g[v][j] += g[to][j - 1];
for (int j = 1; j <= D; j++)
g[v][j] = min(g[v][j], g[v][j - 1]);
}
}
void solve()
{
int ans = inf;
dfs(1, 0);
for (int i = 0; i <= D; i++)
ans = min(f[1][i], ans);
cout << ans << endl;
}
int main()
{
IOS;
memset(f, inf, sizeof(f));
cin >> N >> D;
for (int i = 1; i <= N; i++)
cin >> W[i];
cin >> M;
int b;
for (int i = 1; i <= M; i++)
{
cin >> b;
key[b] = true;
}
int u, v;
for (int i = 1; i < N; i++)
{
cin >> u >> v;
add_edge(u, v);
}
solve();
return 0;
}
洛谷P3267.侦察守卫的更多相关文章
- 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)
洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...
- 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)
题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
随机推荐
- gin中绑定html复选框
main.go package main import "github.com/gin-gonic/gin" type myForm struct { Colors []strin ...
- vue 快速入门 系列 —— 侦测数据的变化 - [vue api 原理]
其他章节请看: vue 快速入门 系列 侦测数据的变化 - [vue api 原理] 前面(侦测数据的变化 - [基本实现])我们已经介绍了新增属性无法被侦测到,以及通过 delete 删除数据也不会 ...
- find -or 用法
find /opt/IBM/WebSphere85/ -name *loggeter* - or -name *loggetter* | xargs rm -rf
- NOIP PJ/CSP-J 题目选做
1. luoguP7074 [CSP-J2020] 方格取数 2. luoguP5662 [CSP-J2019] 纪念品 3. luoguP2671 [NOIP2015 普及组] 求和 4. luog ...
- Java多线程专题3: Thread和ThreadLocal
合集目录 Java多线程专题3: Thread和ThreadLocal 进程, 线程, 协程的区别 进程 Process 进程提供了执行一个程序所需要的所有资源, 一个进程的资源包括虚拟的地址空间, ...
- Ubuntu下Java JDK安装
1.仓库安装 待更新 2.手动安装 1.下载linux平台sdk. 官网:https://www.oracle.com/technetwork/java/javase/downloads/index. ...
- K8s多节点部署+负载均衡+keepalived ——囊萤映雪
K8s多节点部署+负载均衡+keepalived --囊萤映雪 1.多节点master2 部署 2.负载均衡部署+keepalived 1.多节点master2部署: #从master01节点上拷贝证 ...
- NoSQL 之Redis的5大数据类型
NoSQL 之Redis的5大数据类型 Redis的五大数据类型也称五大数据对象:了解过6大数据结构,Redis并没有直接使用这些结构来实现键值对数据库,而是使用这些结构构建了一个对象系统redisO ...
- Shell循环练习题
Shell循环练习题 目录 Shell循环练习题 1.计算从1到100所有整数的和 2.提示用户输入一个小于100的整数,并计算从1到该数之间所有整数的和 3.求从1到100所有整数的偶数和.奇数和 ...
- 对常用I/O模型进行比较说明
一.IO模型的四个特性 关注的是消息通信机制,即调用者在等待一件事情的处理结果时,被调用者是否提供完成状态的通知. 同步:synchronous,被调用者并不提供事件的处理结果相关的通知消息,需要调用 ...