'''
基于用户的协同推荐 条目数据
''' import pandas as pd
from io import StringIO
import json #数据类型一:条目(用户、商品、打分)(避免巨型稀疏矩阵)
csv_txt = '''"Angelica","Blues Traveler",3.5
"Angelica","Broken Bells",2.0
"Angelica","Norah Jones",4.5
"Angelica","Phoenix",5.0
"Angelica","Slightly Stoopid",1.5
"Angelica","The Strokes",2.5
"Angelica","Vampire Weekend",2.0
"Bill","Blues Traveler",2.0
"Bill","Broken Bells",3.5
"Bill","Deadmau5",4.0
"Bill","Phoenix",2.0
"Bill","Slightly Stoopid",3.5
"Bill","Vampire Weekend",3.0
"Chan","Blues Traveler",5.0
"Chan","Broken Bells",1.0
"Chan","Deadmau5",1.0
"Chan","Norah Jones",3.0
"Chan","Phoenix",5,
"Chan","Slightly Stoopid",1.0
"Dan","Blues Traveler",3.0
"Dan","Broken Bells",4.0
"Dan","Deadmau5",4.5
"Dan","Phoenix",3.0
"Dan","Slightly Stoopid",4.5
"Dan","The Strokes",4.0
"Dan","Vampire Weekend",2.0
"Hailey","Broken Bells",4.0
"Hailey","Deadmau5",1.0
"Hailey","Norah Jones",4.0
"Hailey","The Strokes",4.0
"Hailey","Vampire Weekend",1.0
"Jordyn","Broken Bells",4.5
"Jordyn","Deadmau5",4.0
"Jordyn","Norah Jones",5.0
"Jordyn","Phoenix",5.0
"Jordyn","Slightly Stoopid",4.5
"Jordyn","The Strokes",4.0
"Jordyn","Vampire Weekend",4.0
"Sam","Blues Traveler",5.0
"Sam","Broken Bells",2.0
"Sam","Norah Jones",3.0
"Sam","Phoenix",5.0
"Sam","Slightly Stoopid",4.0
"Sam","The Strokes",5.0
"Veronica","Blues Traveler",3.0
"Veronica","Norah Jones",5.0
"Veronica","Phoenix",4.0
"Veronica","Slightly Stoopid",2.5
"Veronica","The Strokes",3.0''' #数据类型二:json数据(用户、商品、打分)
json_txt = '''{"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
"Norah Jones": 4.5, "Phoenix": 5.0,
"Slightly Stoopid": 1.5,
"The Strokes": 2.5, "Vampire Weekend": 2.0}, "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
"Deadmau5": 4.0, "Phoenix": 2.0,
"Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}, "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
"Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
"Slightly Stoopid": 1.0}, "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
"Deadmau5": 4.5, "Phoenix": 3.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 2.0}, "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
"Norah Jones": 4.0, "The Strokes": 4.0,
"Vampire Weekend": 1.0}, "Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0,
"Norah Jones": 5.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 4.0}, "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
"Norah Jones": 3.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.0, "The Strokes": 5.0}, "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
"Phoenix": 4.0, "Slightly Stoopid": 2.5,
"The Strokes": 3.0}
}''' df = None #方式一:加载csv数据
def load_csv_txt():
global df
df = pd.read_csv(StringIO(csv_txt), header=None, names=['user','goods','rate']) #方式二:加载json数据(把json读成条目)
def load_json_txt():
global df
#由json数据得到字典
users = json.loads(json_txt) #遍历字典,得到条目
csv_txt_ = ''
for user in users:
for goods in users[user]:
csv_txt_ += '{},{},{}\n'.format(user, goods, users[user][goods]) df = pd.read_csv(StringIO(csv_txt_), header=None, names=['user','goods','rate']) print('测试:读取数据')
#load_csv_txt()
load_json_txt() def build_xy(user_name1, user_name2):
df1 = df.ix[df['user'] == user_name1, ['goods','rate']]
df2 = df.ix[df['user'] == user_name2, ['goods','rate']] df3 = pd.merge(df1, df2, on='goods', how='inner') #只保留两人都有评分的商品的评分 return df3['rate_x'], df3['rate_y'] #merge之后默认的列名:rate_x,rate_y #曼哈顿距离
def manhattan(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y)) #欧几里德距离
def euclidean(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum((x - y)**2)**0.5 #闵可夫斯基距离
def minkowski(user_name1, user_name2, r):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y)**r)**(1/r) #皮尔逊相关系数
def pearson(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
mean1, mean2 = x.mean(), y.mean()
#分母
denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
return [sum((x-mean1)*(y-mean2))/denominator, 0][denominator == 0] #余弦相似度(数据的稀疏性问题,在文本挖掘中应用得较多)
def cosine(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
#分母
denominator = (sum(x*x)*sum(y*y))**0.5
return [sum(x*y)/denominator, 0][denominator == 0] metric_funcs = {
'manhattan': manhattan,
'euclidean': euclidean,
'minkowski': minkowski,
'pearson': pearson,
'cosine': cosine
} print('\n测试:计算Angelica与Bill的曼哈顿距离')
print(manhattan('Angelica','Bill')) #计算最近的邻居(返回:pd.Series)
def computeNearestNeighbor(user_name, metric='pearson', k=3, r=2):
'''
metric: 度量函数
k: 返回k个邻居
r: 闵可夫斯基距离专用 返回:pd.Series,其中index是邻居名称,values是距离
'''
array = df[df['user'] != user_name]['user'].unique()
if metric in ['manhattan', 'euclidean']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nsmallest(k)
elif metric in ['minkowski']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name, r,)).nsmallest(k)
elif metric in ['pearson', 'cosine']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nlargest(k) print('\n测试:计算Hailey的最近邻居')
print(computeNearestNeighbor('Hailey')) #向给定用户推荐(返回:pd.DataFrame)
def recommend(user_name):
"""返回推荐结果列表"""
# 找到距离最近的用户名
nearest_username = computeNearestNeighbor(user_name).index[0] # 找出这位用户评价过、但自己未曾评价的乐队
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == nearest_username, ['goods', 'rate']] df3 = pd.merge(df1, df2, on='goods', how='outer') return df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']].sort_values(by='rate_y') print('\n测试:为Hailey做推荐')
print(recommend('Hailey')) #向给定用户推荐(返回:pd.Series)
def recommend2(user_name, metric='pearson', k=3, n=5, r=2):
'''
metric: 度量函数
k: 根据k个最近邻居,协同推荐
r: 闵可夫斯基距离专用
n: 推荐的商品数目 返回:pd.Series,其中index是商品名称,values是加权评分
'''
# 找到距离最近的k个邻居
nearest_neighbors = computeNearestNeighbor(user_name, metric='pearson', k=k, r=r) # 计算权值
if metric in ['manhattan', 'euclidean', 'minkowski']: # 距离越小,越类似
nearest_neighbors = 1 / nearest_neighbors # 所以,取倒数(或者别的减函数,如:y=2**-x)
elif metric in ['pearson', 'cosine']: # 距离越大,越类似
pass nearest_neighbors = nearest_neighbors / nearest_neighbors.sum() #已经变为权值 # 逐个邻居找出其评价过、但自己未曾评价的乐队(或商品)的评分,并乘以权值
neighbors_rate_with_weight = []
for neighbor_name in nearest_neighbors.index:
# 每个结果:pd.Series,其中index是商品名称,values是评分(已乘权值)
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == neighbor_name, ['goods', 'rate']] df3 = pd.merge(df1, df2, on='goods', how='outer') df4 = df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']] #注意这中间有一个转化为pd.Series的操作!
neighbors_rate_with_weight.append(pd.Series(df4['rate_y'].tolist(), index=df4['goods']) * nearest_neighbors[neighbor_name]) # 把邻居们的加权评分拼接成pd.DataFrame,按列累加,取最大的前n个商品的评分
return pd.concat(neighbors_rate_with_weight, axis=1).sum(axis=1, skipna=True).nlargest(n) # 黑科技! print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='manhattan', k=3, n=5)) print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='euclidean', k=3, n=5, r=2)) print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='pearson', k=1, n=5))

【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)的更多相关文章

  1. 【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)

    原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于 ...

  2. 【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)

    ''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...

  3. 【笔记5】用pandas实现矩阵数据格式的推荐算法 (基于物品的协同)

    ''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...

  4. R语言实现关联规则与推荐算法(学习笔记)

    R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...

  5. 学习笔记-menusript控件中条目权限设置使用

    在做一个小程序的时候,偶然发现了使用menusript控件做权限设置的方法,仅此标记,以供参考. 首先创建一个实例:testuseright.sln, 在项目文件里创建两个窗体:Form1.cs和us ...

  6. Python笔记 #12# Dictionary & Pandas: Object Creation

    Document of Dictionaries 10 Minutes to pandas tutorialspoint import pandas as pd data = [['Alex',10] ...

  7. Office365学习笔记—Lookup类型加载条目过多解决方案

    1,随着接触的项目越来越多,遇到的各种奇葩的问题也越来越多,不得不说,SharePoint是个好东西,提高了开发效率,简化了很多基础的功能.但是令人头疼的问题是,当你想做个稍微复杂点的功能,就不得不研 ...

  8. Office365学习笔记—列表查询,删除条目,更新条目。

    1,基于Query语句的列表查询. function retrieveListItems(itemId) { var siteUrl=_spPageContextInfo.webServerRelat ...

  9. 读书笔记一、pandas之series

    转自 # 直接传入一组数据 from pandas import Series, DataFrame obj = Series([4, 2, 3]) obj 0 4 1 2 2 3 dtype: in ...

随机推荐

  1. 使用CSS3制作立体效果的导航菜单

    效果如下: 也可以点击网址查看效果:http://keleyi.com/keleyi/phtml/html5/12.htm 请使用支持CSS3的浏览器访问本页面,获得更好效果. 源代码: <st ...

  2. IOS开发基础知识--碎片8

    1:用UIImageView作为背景,但直接把按钮或者UITextField放在上面无法相应事件. 解决办法:UIImageView默认的UserInteractionEnabled是NO,把它修改成 ...

  3. JAVA匿名内部类

    首先定义一个抽象类Computer public abstract class Computer { //抽象类是不可以常见对象的 int a=1; public abstract void onli ...

  4. Xcode出现( linker command failed with exit code 1)错误总结

    这种问题,通常出现在添加第三方库文件或者多人开发时. 这种问题一般是找不到文件而导致的链接错误. 我们可以从如下几个方面着手排查. 先可以再试试一下几个方法:  1,看看是不是有新添加的文件跟之前文件 ...

  5. iOS开发之功能模块--长方形UIImage截取中间最大正方形区域

    这里直接用CoreGraphics的一些处理图片的方法,本身不难,但是有些时候用的不多,就会遗忘掉使用方法的细节.下面就直接展示关键源码,以便下次重复需求,就可以立马找回. 该方法中在UIImage的 ...

  6. 第一课 ionic 日志输出

    写程序的首要问题就是要打印日志,因为只有将日志输出才能真正了解程序的运行状态. 日志输出有两种方式 1.console输出 console.log("测试一下") console. ...

  7. js中A包含B的写法与分割字符串的方法

    在java中A包含B的写法 if(A.contains(B)){ ... } 在js中没有contains方法,应该使用下面这种方法: var an = "传染性.潜伏性.破坏性" ...

  8. CRLF line terminators导致shell脚本报错:command not found

    Linux和Windows文本文件的行结束标志不同.在Linux中,文本文件用"/n"表示回车换行,而Windows用"/r/n"表示回车换行.有时候在Wind ...

  9. SQL SERVER 中如何用脚本管理作业

    在SQL SERVER中用脚本管理作业,在绝大部分场景下,脚本都比UI界面管理作业要高效.简洁.打个简单的比方,如果你要查看作业的运行时长,如果用UI界面查看,100个作业,你就得在历史记录里面至少查 ...

  10. percona教程:MySQL GROUP_CONCAT的使用

    percona有一篇blog: The power of MySQL GROUP_CONCAT 比较详细地介绍了GROUP_CONCAT函数的用法.简单地翻译了一下. 假设你有4名工程师,这周他们为6 ...