【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)
'''
基于用户的协同推荐
条目数据
'''
import pandas as pd
from io import StringIO
import json
#数据类型一:条目(用户、商品、打分)(避免巨型稀疏矩阵)
csv_txt = '''"Angelica","Blues Traveler",3.5
"Angelica","Broken Bells",2.0
"Angelica","Norah Jones",4.5
"Angelica","Phoenix",5.0
"Angelica","Slightly Stoopid",1.5
"Angelica","The Strokes",2.5
"Angelica","Vampire Weekend",2.0
"Bill","Blues Traveler",2.0
"Bill","Broken Bells",3.5
"Bill","Deadmau5",4.0
"Bill","Phoenix",2.0
"Bill","Slightly Stoopid",3.5
"Bill","Vampire Weekend",3.0
"Chan","Blues Traveler",5.0
"Chan","Broken Bells",1.0
"Chan","Deadmau5",1.0
"Chan","Norah Jones",3.0
"Chan","Phoenix",5,
"Chan","Slightly Stoopid",1.0
"Dan","Blues Traveler",3.0
"Dan","Broken Bells",4.0
"Dan","Deadmau5",4.5
"Dan","Phoenix",3.0
"Dan","Slightly Stoopid",4.5
"Dan","The Strokes",4.0
"Dan","Vampire Weekend",2.0
"Hailey","Broken Bells",4.0
"Hailey","Deadmau5",1.0
"Hailey","Norah Jones",4.0
"Hailey","The Strokes",4.0
"Hailey","Vampire Weekend",1.0
"Jordyn","Broken Bells",4.5
"Jordyn","Deadmau5",4.0
"Jordyn","Norah Jones",5.0
"Jordyn","Phoenix",5.0
"Jordyn","Slightly Stoopid",4.5
"Jordyn","The Strokes",4.0
"Jordyn","Vampire Weekend",4.0
"Sam","Blues Traveler",5.0
"Sam","Broken Bells",2.0
"Sam","Norah Jones",3.0
"Sam","Phoenix",5.0
"Sam","Slightly Stoopid",4.0
"Sam","The Strokes",5.0
"Veronica","Blues Traveler",3.0
"Veronica","Norah Jones",5.0
"Veronica","Phoenix",4.0
"Veronica","Slightly Stoopid",2.5
"Veronica","The Strokes",3.0'''
#数据类型二:json数据(用户、商品、打分)
json_txt = '''{"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
"Norah Jones": 4.5, "Phoenix": 5.0,
"Slightly Stoopid": 1.5,
"The Strokes": 2.5, "Vampire Weekend": 2.0},
"Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
"Deadmau5": 4.0, "Phoenix": 2.0,
"Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
"Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
"Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
"Slightly Stoopid": 1.0},
"Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
"Deadmau5": 4.5, "Phoenix": 3.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 2.0},
"Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
"Norah Jones": 4.0, "The Strokes": 4.0,
"Vampire Weekend": 1.0},
"Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0,
"Norah Jones": 5.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.5, "The Strokes": 4.0,
"Vampire Weekend": 4.0},
"Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
"Norah Jones": 3.0, "Phoenix": 5.0,
"Slightly Stoopid": 4.0, "The Strokes": 5.0},
"Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
"Phoenix": 4.0, "Slightly Stoopid": 2.5,
"The Strokes": 3.0}
}'''
df = None
#方式一:加载csv数据
def load_csv_txt():
global df
df = pd.read_csv(StringIO(csv_txt), header=None, names=['user','goods','rate'])
#方式二:加载json数据(把json读成条目)
def load_json_txt():
global df
#由json数据得到字典
users = json.loads(json_txt)
#遍历字典,得到条目
csv_txt_ = ''
for user in users:
for goods in users[user]:
csv_txt_ += '{},{},{}\n'.format(user, goods, users[user][goods])
df = pd.read_csv(StringIO(csv_txt_), header=None, names=['user','goods','rate'])
print('测试:读取数据')
#load_csv_txt()
load_json_txt()
def build_xy(user_name1, user_name2):
df1 = df.ix[df['user'] == user_name1, ['goods','rate']]
df2 = df.ix[df['user'] == user_name2, ['goods','rate']]
df3 = pd.merge(df1, df2, on='goods', how='inner') #只保留两人都有评分的商品的评分
return df3['rate_x'], df3['rate_y'] #merge之后默认的列名:rate_x,rate_y
#曼哈顿距离
def manhattan(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y))
#欧几里德距离
def euclidean(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
return sum((x - y)**2)**0.5
#闵可夫斯基距离
def minkowski(user_name1, user_name2, r):
x, y = build_xy(user_name1, user_name2)
return sum(abs(x - y)**r)**(1/r)
#皮尔逊相关系数
def pearson(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
mean1, mean2 = x.mean(), y.mean()
#分母
denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
return [sum((x-mean1)*(y-mean2))/denominator, 0][denominator == 0]
#余弦相似度(数据的稀疏性问题,在文本挖掘中应用得较多)
def cosine(user_name1, user_name2):
x, y = build_xy(user_name1, user_name2)
#分母
denominator = (sum(x*x)*sum(y*y))**0.5
return [sum(x*y)/denominator, 0][denominator == 0]
metric_funcs = {
'manhattan': manhattan,
'euclidean': euclidean,
'minkowski': minkowski,
'pearson': pearson,
'cosine': cosine
}
print('\n测试:计算Angelica与Bill的曼哈顿距离')
print(manhattan('Angelica','Bill'))
#计算最近的邻居(返回:pd.Series)
def computeNearestNeighbor(user_name, metric='pearson', k=3, r=2):
'''
metric: 度量函数
k: 返回k个邻居
r: 闵可夫斯基距离专用
返回:pd.Series,其中index是邻居名称,values是距离
'''
array = df[df['user'] != user_name]['user'].unique()
if metric in ['manhattan', 'euclidean']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nsmallest(k)
elif metric in ['minkowski']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name, r,)).nsmallest(k)
elif metric in ['pearson', 'cosine']:
return pd.Series(array, index=array.tolist()).apply(metric_funcs[metric], args=(user_name,)).nlargest(k)
print('\n测试:计算Hailey的最近邻居')
print(computeNearestNeighbor('Hailey'))
#向给定用户推荐(返回:pd.DataFrame)
def recommend(user_name):
"""返回推荐结果列表"""
# 找到距离最近的用户名
nearest_username = computeNearestNeighbor(user_name).index[0]
# 找出这位用户评价过、但自己未曾评价的乐队
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == nearest_username, ['goods', 'rate']]
df3 = pd.merge(df1, df2, on='goods', how='outer')
return df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']].sort_values(by='rate_y')
print('\n测试:为Hailey做推荐')
print(recommend('Hailey'))
#向给定用户推荐(返回:pd.Series)
def recommend2(user_name, metric='pearson', k=3, n=5, r=2):
'''
metric: 度量函数
k: 根据k个最近邻居,协同推荐
r: 闵可夫斯基距离专用
n: 推荐的商品数目
返回:pd.Series,其中index是商品名称,values是加权评分
'''
# 找到距离最近的k个邻居
nearest_neighbors = computeNearestNeighbor(user_name, metric='pearson', k=k, r=r)
# 计算权值
if metric in ['manhattan', 'euclidean', 'minkowski']: # 距离越小,越类似
nearest_neighbors = 1 / nearest_neighbors # 所以,取倒数(或者别的减函数,如:y=2**-x)
elif metric in ['pearson', 'cosine']: # 距离越大,越类似
pass
nearest_neighbors = nearest_neighbors / nearest_neighbors.sum() #已经变为权值
# 逐个邻居找出其评价过、但自己未曾评价的乐队(或商品)的评分,并乘以权值
neighbors_rate_with_weight = []
for neighbor_name in nearest_neighbors.index:
# 每个结果:pd.Series,其中index是商品名称,values是评分(已乘权值)
df1 = df.ix[df['user'] == user_name, ['goods', 'rate']]
df2 = df.ix[df['user'] == neighbor_name, ['goods', 'rate']]
df3 = pd.merge(df1, df2, on='goods', how='outer')
df4 = df3.ix[(df3['rate_x'].isnull()) & (df3['rate_y'].notnull()), ['goods', 'rate_y']]
#注意这中间有一个转化为pd.Series的操作!
neighbors_rate_with_weight.append(pd.Series(df4['rate_y'].tolist(), index=df4['goods']) * nearest_neighbors[neighbor_name])
# 把邻居们的加权评分拼接成pd.DataFrame,按列累加,取最大的前n个商品的评分
return pd.concat(neighbors_rate_with_weight, axis=1).sum(axis=1, skipna=True).nlargest(n) # 黑科技!
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='manhattan', k=3, n=5))
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='euclidean', k=3, n=5, r=2))
print('\n测试:为Hailey做推荐')
print(recommend2('Hailey', metric='pearson', k=1, n=5))
【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)的更多相关文章
- 【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)
原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于 ...
- 【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- 【笔记5】用pandas实现矩阵数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...
- R语言实现关联规则与推荐算法(学习笔记)
R语言实现关联规则 笔者前言:以前在网上遇到很多很好的关联规则的案例,最近看到一个更好的,于是便学习一下,写个学习笔记. 1 1 0 0 2 1 1 0 0 3 1 1 0 1 4 0 0 0 0 5 ...
- 学习笔记-menusript控件中条目权限设置使用
在做一个小程序的时候,偶然发现了使用menusript控件做权限设置的方法,仅此标记,以供参考. 首先创建一个实例:testuseright.sln, 在项目文件里创建两个窗体:Form1.cs和us ...
- Python笔记 #12# Dictionary & Pandas: Object Creation
Document of Dictionaries 10 Minutes to pandas tutorialspoint import pandas as pd data = [['Alex',10] ...
- Office365学习笔记—Lookup类型加载条目过多解决方案
1,随着接触的项目越来越多,遇到的各种奇葩的问题也越来越多,不得不说,SharePoint是个好东西,提高了开发效率,简化了很多基础的功能.但是令人头疼的问题是,当你想做个稍微复杂点的功能,就不得不研 ...
- Office365学习笔记—列表查询,删除条目,更新条目。
1,基于Query语句的列表查询. function retrieveListItems(itemId) { var siteUrl=_spPageContextInfo.webServerRelat ...
- 读书笔记一、pandas之series
转自 # 直接传入一组数据 from pandas import Series, DataFrame obj = Series([4, 2, 3]) obj 0 4 1 2 2 3 dtype: in ...
随机推荐
- [连载]《C#通讯(串口和网络)框架的设计与实现》-2.框架的总体设计
目 录 C#通讯(串口和网络)框架的设计与实现... 1 (SuperIO)- 框架的总体设计... 1 第二章 框架总体的设计... 2 2.1 ...
- [翻译] Autoac 最佳实践和建议
使用嵌套的 ILifetimeScope 解析服务 Autofac 被设计为跟踪(track)和清理(dispose)资源.为确保资源被正确处理,务必将长时间运行的应用程序分成小的工作单元 (请求或事 ...
- Linux(四)__javaee开发环境的搭建
一.VMware tools 通过VMware tools来实现主机和VM共享文件,详细介绍 记得重启就能实现本机和虚拟机之间复制粘贴文件. 二.搭建java环境: 一般linux都会预装openjd ...
- javascript执行环境(执行期上下文)详解
javascript执行环境(执行期上下文) 当js控制器(control)进入可执行代码时,控制器会进入一个执行环境,活动的多个执行环境构成执行环境栈,最上面的是正在运行的执行环境,当控制器进入一个 ...
- HTML5自定义属性之data-*
HTML5 增加了一项新功能是 自定义数据属性 ,也就是 data-* 自定义属性.在HTML5中我们可以使用以 data- 为前缀来设置我们需要的自定义属性,来进行一些数据的存放.当然高级浏览器下 ...
- iOS 9 强制横屏
首先在plist 文件中 Supported interface orientations 选项 只留下一个 portrait 屏幕强制横屏 使用以下代码 self.navigationControl ...
- iOS - 对OOA、OOD、OOP的理解
很多人在求职的时候,会遇到一个这样的问题:“对OOD/OOP有较深的理解”,这个时候有人就会问OOD.OOP是什么呢?那么今天咱们就一块来看一下OOA.OOD.OOP到底是什么! (一)OOA--面向 ...
- Mac使用极简教程
最近领导让我写一篇关于Mac的使用教程,因为使用人群未知,所以尽量写的通俗易懂,可谓是关于Mac电脑使用的精简教程吧,在此发表出来以供参考. Mac因为安全性而闻名,我们拥有了一部Mac,那么我们来了 ...
- PL/SQL重新编译包无反应
前几天碰到一个有趣的事情:早上同事执行一个包很久没有反应,就中断了执行,发邮件让我帮忙查看具体情况,我用PL/SQL Developer登录后,找到这个包的过程中发现这个包的图标有红色叉叉,也就是说这 ...
- JavaSe:-javaagent,-agentlib,-agentpath
内容简述 -javaagent,-agentlib, -agentpath 说明 -javaagent示例 -javaagent.-agentlib.-agentpath -agentlib:li ...