39. 组合总和

知识点:递归;回溯;组合;剪枝

题目描述

给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数 target 的唯一组合。

candidates 中的数字可以无限制重复被选取。如果至少一个所选数字数量不同,则两种组合是唯一的。

对于给定的输入,保证和为 target 的唯一组合数少于 150 个。

示例
输入: candidates = [2,3,6,7], target = 7
输出: [[7],[2,2,3]] 输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]] 输入: candidates = [2], target = 1
输出: [] 输入: candidates = [1], target = 1
输出: [[1]] 输入: candidates = [1], target = 2
输出: [[1,1]]

解法一:回溯

回溯算法的模板:

result = []   //结果集
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径) //把已经做出的选择添加到结果集;
return //一般的回溯函数返回值都是空; for 选择 in 选择列表: //其实每个题的不同很大程度上体现在选择列表上,要注意这个列表的更新,
//比如可能是搜索起点和重点,比如可能是已经达到某个条件,比如可能已经选过了不能再选;
做选择 //把新的选择添加到路径里;路径.add(选择)
backtrack(路径, 选择列表) //递归;
撤销选择 //回溯的过程;路径.remove(选择)

核心就是for循环里的递归,在递归之前做选择,在递归之后撤销选择;


对于本题,有两点和77题组合不一样:

  • 此题可以重复选取选过的元素,所以选择列表的搜索起点不用i+1,仍然是i。
  • 此题没有像之前的题明确给出递归的层数,但是给了target,所以如果相加>target,那就证明到头了;

我们换个角度重新画这个图,和77题有点差距,理解的更全面一点。 其实这就是一个横向循环和纵向的递归,横向循环做出不同的选择,纵向在不同的选择基础上做下一步选择。

class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
Stack<Integer> path = new Stack<>();
backtrack(candidates, target, 0, 0, res, path);
return res;
}
private void backtrack(int[] candidates, int target, int sum, int begin, List<List<Integer>> res, Stack<Integer> path){
if(sum > target){
return;
}
if(sum == target){
res.add(new ArrayList<>(path));
return;
}
for(int i = begin; i < candidates.length; i++){
//做选择;
sum += candidates[i];
path.push(candidates[i]);
//递归:开始下一轮选择;
backtrack(candidates, target, sum, i, res, path); //不用+1,可以重复选;
//撤销选择:回溯
sum -= candidates[i];
path.pop();
}
}
}

解法二:剪枝优化

上述程序有优化的空间,我们可以对数组先进行排序,然后如果找到了当前的sum已经等于target或大于target了,那后面的就可以直接跳过了,因为后面的元素更大,肯定更大于target。

class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
Stack<Integer> path = new Stack<>();
Arrays.sort(candidates); //排序
backtrack(candidates, target, 0, 0, res, path);
return res;
}
private void backtrack(int[] candidates, int target, int sum, int begin, List<List<Integer>> res, Stack<Integer> path){
if(sum == target){
res.add(new ArrayList<>(path));
return;
}
for(int i = begin; i < candidates.length && sum + candidates[i] <= target; i++){
//剪枝:如果sum+candidates[i] > target就结束;
//做选择;
sum += candidates[i];
path.push(candidates[i]);
//递归:开始下一轮选择;
backtrack(candidates, target, sum, i, res, path); //不用+1,可以重复选;
//撤销选择:回溯
sum -= candidates[i];
path.pop();
}
}
}

体会

  • 要能够把这种决策树画出来;
  • 在求和问题中,排序之后加上剪枝是很常见的操作,能够舍弃无关的操作;

相关链接

回溯算法入门级介绍!

组合问题

【LeetCode】39. 组合总和的更多相关文章

  1. Java实现 LeetCode 39 组合总和

    39. 组合总和 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字 ...

  2. [LeetCode] 39. 组合总和

    题目链接 : https://leetcode-cn.com/problems/combination-sum/ 题目描述: 给定一个无重复元素的数组 candidates 和一个目标数 target ...

  3. [leetcode] 39. 组合总和(Java)(dfs、递归、回溯)

    39. 组合总和 直接暴力思路,用dfs+回溯枚举所有可能组合情况.难点在于每个数可取无数次. 我的枚举思路是: 外层枚举答案数组的长度,即枚举解中的数字个数,从1个开始,到target/ min(c ...

  4. leetcode 39 组合总和 JAVA

    题目: 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制 ...

  5. LeetCode 39. 组合总和(Combination Sum)

    题目描述 给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限 ...

  6. leetcode 39. 组合总和(python)

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  7. LeetCode——39. 组合总和

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  8. Java实现 LeetCode 40 组合总和 II(二)

    40. 组合总和 II 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在 ...

  9. LeetCode 中级 - 组合总和II(105)

    给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在每个组合中只能使用一次. ...

随机推荐

  1. 5、rsync全网备份

    定时备份rsync(增量备份,无差异备份,daemon进程)+crontab,主要备份一些任务脚本和配置文件,如果此时有用户增加数据, 如果是增量备份的话不会备份下来,因为在备份的那一刻,数据已经被锁 ...

  2. POJ 3026 Borg Maze 广搜(BFS)+最小生成树

    题意:从S出发,去抓每一个A,求总路径最短长度.在S点和A点人可以分身成2人,不过一次只能让一个人走. 思路是先利用BFS求出各点之间的距离,建成图,再套用最小生成树模板. 一次性A了.不过觉得在判断 ...

  3. 资源:Hadoop安装包下载路径

    下载路径 Hadoop所有版本:http://archive.apache.org/dist/hadoop/common/

  4. 使用Gradle构建多模块SpringBoot项目

    使用Gradle构建多模块SpringBoot项目 本项目使用Gradle构建SpringBoot项目,将不同的业务进行不同的模块划分(不做微服务与分布式架构); - 编辑器:Intellij IDE ...

  5. Java核心基础第4篇-Java数组的常规操作

    Java数组 一.数组简介 数组是多个相同类型数据的组合,实现对这些数据的统一管理 数组属引用类型,数组型数据是对象(Object) 数组中的元素可以是任何数据类型,包括基本类型和引用类型 数组类型是 ...

  6. Ubuntu命令总结

    sudo apt-get update 系统更新 shutdown -h now 关闭服务器 shutdown -r now 重启服务器 uname -a ubuntu中查看内核版本的命令 gedit ...

  7. Asp.net mvc使用SignaIR

    一.Asp.net SignalR 是个什么东东 Asp.net SignalR是微软为实现实时通信的一个类库.一般情况下,SignalR会使用JavaScript的长轮询(long polling) ...

  8. Docker从容器拷贝文件到宿主机或从宿主机拷贝文件到容器

    1.从容器里面拷文件到宿主机? 答:在宿主机里面执行以下命令 docker cp 容器名:要拷贝的文件在容器里面的路径       要拷贝到宿主机的相应路径 示例: 假设容器名为testtomcat, ...

  9. DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。

    DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...

  10. Spring RestTemplate 之exchange方法

    ●exchange方法提供统一的方法模板进行四种请求:POST,PUT,DELETE,GET (1)POST请求 String reqJsonStr = "{\"code\&quo ...