Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 59683   Accepted: 17296

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri. 

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source


notonlysuccess大神的题解
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报 思路:这题数据范围很大,直接搞超时+超内存,需要离散化:  离散化简单的来说就是只取我们需要的值来用,比如说区间[,],[,] 我们用不到[-∞,][,][,][,][,+∞]这些值,所以我只需要1000,,,2012就够了,将其分别映射到0,,,,在于复杂度就大大的降下来了 所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多 而这题的难点在于每个数字其实表示的是一个单位长度(并且一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱) 给出下面两个简单的例子应该能体现普通离散化的缺陷: - - - - - -  为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[,,,]  如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[,,,,,],然后再做线段树就好了.  线段树功能:update:成段替换 query:简单hash

说一下离散化,用map完美TLE,改成1e7大数组因为memset太耗时,再改成二分搜索用下标快好多

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int N=1e4+,TREE=4e4+;
#define m (l+r)/2
#define lson o<<1,l,m
#define rson o<<1|1,m+1,r
#define lc o<<1
#define rc o<<1|1
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
//map<int,int> mp;
//int mp[10000009];
int mp[N<<];
int t[TREE<<];
int T,n,ll[N],rr[N],a[N<<];
inline void paint(int o,int v){
t[o]=v;
}
inline void pushDown(int o){
if(t[o]!=){
paint(lc,t[o]);
paint(rc,t[o]);
t[o]=;
}
}
void draw(int o,int l,int r,int ql,int qr,int v){//printf("draw %d %d %d\n",o,l,r);
if(ql<=l&&r<=qr) paint(o,v);
else{
pushDown(o);
if(ql<=m) draw(lson,ql,qr,v);
if(m<qr) draw(rson,ql,qr,v);
}
}
int vis[N],ans=;
void query(int o,int l,int r,int ql,int qr){//printf("quer %d %d %d\n",o,l,r);
if(t[o]){
if(!vis[t[o]]){ans++;vis[t[o]]=;}
}else{
if(l==r) return;
if(ql<=m) query(lson,ql,qr);
if(m<qr) query(rson,ql,qr);
}
}
int main(){
T=read();
while(T--){
n=read();
memset(t,,sizeof(t));
//mp.clear();
//memset(mp,0,sizeof(mp));
for(int i=;i<=n;i++){ll[i]=read();rr[i]=read();a[*i-]=ll[i];a[*i]=rr[i];}
sort(a+,a++*n);
int cnt=;
// mp[a[1]]=++cnt;
// for(int i=2;i<=2*n;i++)
// if(a[i]!=a[i-1]){
// //if(!mp.count(a[i]-1)) mp[a[i]-1]=++cnt;
// if(!mp[a[i]-1]) mp[a[i]-1]=++cnt;
// mp[a[i]]=++cnt;
// }
// for(int i=1;i<=n;i++){
// int ql=mp[ll[i]],qr=mp[rr[i]];//printf("hi %d %d\n",ql,qr);
// draw(1,1,cnt,ql,qr,i);
// }
//
for(int i=;i<=*n;i++) if(a[i]!=a[i-]) mp[++cnt]=a[i];
for(int i=cnt;i>=;i--) if(mp[i]!=mp[i-]+) mp[++cnt]=mp[i-]+;
sort(mp+,mp++cnt);
for(int i=;i<=n;i++){
int ql=lower_bound(mp+,mp++cnt,ll[i])-mp,qr=lower_bound(mp+,mp++cnt,rr[i])-mp;
draw(,,cnt,ql,qr,i);
}
ans=;
memset(vis,,sizeof(vis));
query(,,cnt,,cnt);
printf("%d\n",ans); //printf("\n\ncnt %d\n",cnt);
//for(int i=1;i<=10;i++) printf("mp %d %d\n",i,mp[i]);
}
}
 

POJ2528Mayor's posters[线段树 离散化]的更多相关文章

  1. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  2. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  3. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  4. Mayor's posters (线段树+离散化)

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  5. POJ2528Mayor's posters 线段树,离散化技巧

    题意:一个坐标轴从1~1e7,每次覆盖一个区间(li,ri),问最后可见区间有多少个(没有被其他区间挡住的) 线段树,按倒序考虑,贴上的地方记为1,每次看(li,ri)这个区间是否全是1,全是1就说明 ...

  6. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  7. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  8. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  9. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

随机推荐

  1. Differences between INDEX, PRIMARY, UNIQUE, FULLTEXT in MySQL?

    487down vote Differences KEY or INDEX refers to a normal non-unique index.  Non-distinct values for ...

  2. JSON总结(java篇)

    JSON总结(java篇一) JSON简介 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它基于ECMAScript的一个子集. JSON采用完全独立于 ...

  3. ASP.NET MVC搭建项目后台UI框架—5、Demo演示Controller和View的交互

    目录 ASP.NET MVC搭建项目后台UI框架—1.后台主框架 ASP.NET MVC搭建项目后台UI框架—2.菜单特效 ASP.NET MVC搭建项目后台UI框架—3.面板折叠和展开 ASP.NE ...

  4. springmvc+mybatis+spring 整合源码项目

    A集成代码生成器 [正反双向(单表.主表.明细表.树形表,开发利器)+快速构建表单; freemaker模版技术 ,0个代码不用写,生成完整的一个模块,带页面.建表sql脚本,处理类,service等 ...

  5. jQuery基础知识总结

    1.  jQuery基本概念介绍             1.1 什么是jQuery 一个javascript库,把常用方法写到一个js文件中,需要的时候直接调用即可 学习jQuery就是学习一些方法 ...

  6. 滚动条美化实践(原生js,iscroll,nicescroll)

    近期需要改造项目中的滚动条,使原滚动条在三大浏览器下表现相同,分享一下自己的改造经历: 项目中的滚动条分布在网页的各个小窗口中,使用的是-webkit-scrollbar制作,在-webkit内核的浏 ...

  7. iOS RunLoop简介

    一.什么是RunLoop? RunLoop是运行循环,每个Cocoa应用程序都由一个处于阻塞状态的do/while循环驱动,当有事件发生时,就把事件分派给合适的监听器,如此反复直到循环停止.处理分派的 ...

  8. 用CAShapeLayer实现一个简单的饼状图(PieView)

    自己写了一个简单的PieView,demo在这里:https://github.com/Phelthas/LXMPieView 效果如图: 参考了https://github.com/kevinzho ...

  9. iOS开发-UI 从入门到精通(三)

    iOS开发-UI 从入门到精通(三)是对 iOS开发-UI 从入门到精通(一)知识点的综合练习,搭建一个简单地登陆界面,增强实战经验,为以后做开发打下坚实的基础! ※在这里我们还要强调一下,开发环境和 ...

  10. Java调优知识汇总

    查看java进程运行状况jps -lvm 查看java默认堆大小 java -XX:+PrintFlagsFinal | grep MaxHeapSize eclipse调试设置vm参数 在项目上右键 ...