DP? (hdu3944)
DP?
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 128000/128000 K (Java/Others)
Total Submission(s): 2871 Accepted Submission(s): 894

Figure
1 shows the Yang Hui Triangle. We number the row from top to bottom
0,1,2,…and the column from left to right 0,1,2,….If using C(n,k)
represents the number of row n, column k. The Yang Hui Triangle has a
regular pattern as follows.
C(n,0)=C(n,n)=1 (n ≥ 0)
C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
Write
a program that calculates the minimum sum of numbers passed on a route
that starts at the top and ends at row n, column k. Each step can go
either straight down or diagonally down to the right like figure 2.
As the answer may be very large, you only need to output the answer mod p which is a prime.
to the problem will consists of series of up to 100000 data sets. For
each data there is a line contains three integers n,
k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is
terminated by end-of-file.
every test case, you should output "Case #C: " first, where C indicates
the case number and starts at 1.Then output the minimum sum mod p.
4 2 7
Case #2: 5
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 LL a[10005];
12 bool prime[10005];
13 int id[10005];
14 int biao[2000][10005];
15 LL quick(LL n,LL m,LL mod);
16 LL lucas(LL n,LL m,LL mod);
17 int main(void)
18 {
19 int i,j,k;
20 LL n,m,mod;
21 for(i=2; i<=1005; i++)
22 if(!prime[i])
23 for(j=i; (i*j)<=10005; j++)
24 prime[i*j]=true;
25 int tk=0;
26 for(i=2; i<=10005; i++)
27 if(!prime[i])
28 {
29 id[i]=tk;
30 biao[tk][0]=1;
31 biao[tk][1]=1;
32 for(j=2; j<i; j++)
33 {
34 biao[tk][j]=biao[tk][j-1]*j%i;
35 }
36 tk++;
37 }
38 int __ca=0;
39 while(scanf("%lld %lld %lld",&n,&m,&mod)!=EOF)
40 {
41 __ca++; LL cc=n-m;
42 n+=1;
43
44 m=min(m,cc);
45 LL ask=lucas(m,n,mod);
46 ask=ask+(n-m-1)%mod;
47 ask%=mod;
48 printf("Case #%d: ",__ca);
49 printf("%lld\n",ask);
50 }
51 return 0;
52 }
53 LL lucas(LL n,LL m,LL mod)
54 {
55 if(m==0)
56 {
57 return 1;
58 }
59 else
60 {
61 LL nn=n%mod;
62 LL mm=m%mod;
63 if(mm<nn)
64 return 0;
65 else
66 {
67 LL ni=biao[id[mod]][mm-nn]*biao[id[mod]][nn]%mod;
68 ni=biao[id[mod]][mm]*quick(ni,mod-2,mod)%mod;
69 return ni*lucas(n/mod,m/mod,mod);
70 }
71 }
72 }
73 LL quick(LL n,LL m,LL mod)
74 {
75 LL ans=1;
76 while(m)
77 {
78 if(m&1)
79 {
80 ans=ans*n%mod;
81 }
82 n=n*n%mod;
83 m/=2;
84 }
85 return ans;
86 }
DP? (hdu3944)的更多相关文章
- HDU-3944 DP?(组合数求模)
一.题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3944 二.题意 给一个巨大的杨辉三角,采用类似DP入门题“数字三角形”的方式求从顶点$(0, 0) ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
随机推荐
- 数据集成工具—FlinkX
@ 目录 FlinkX的安装与简单使用 FlinkX的安装 FlinkX的简单使用 读取mysql中student表中数据 FlinkX本地运行 MySQLToHDFS MySQLToHive MyS ...
- A Child's History of England.18
But, although she was a gentle lady, in all things worthy to be beloved - good, beautiful, sensible, ...
- day30线程(Threads)
day30线程(Threads) 1.开启线程 一.什么是线程: 1.进程是资源分配的最小单位,线程是CPU调度的最小单位.每一个进程中至少有一个线程. 2.主进程中的线程称为主线程,其他开启的线程称 ...
- C语言大小端判定
要判定大小端?需要弄清以下几个问题: 1.当一个变量占多个字节时,变量的指针指向的是低地址 2.什么是大小端? 大端模式:是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中. 小 ...
- 分配器——allocators
任何容器的构建都离不开分配器,分配器顾名思义就是分割配置内存资源的组件,分配器的效率直接影响力容器的效率. operator new()和malloc() C/C++底层都是通过malloc()调用系 ...
- Windows zip版本安装MySQL
Windows --MySQL zip版本安装记录: step1. 官网download zip包:http://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5. ...
- What happens when more restrictive access is given to a derived class method in C++?
We have discussed a similar topic in Java here. Unlike Java, C++ allows to give more restrictive acc ...
- SpringCloud微服务服务间调用之OpenFeign介绍
开发微服务,免不了需要服务间调用.Spring Cloud框架提供了RestTemplate和FeignClient两个方式完成服务间调用,本文简要介绍如何使用OpenFeign完成服务间调用. Op ...
- Mybatis中 SIMPLE、REUSE、BATCH的区别
Executor分成两大类,一类是CacheExecutor,另一类是普通Executor. 普通类又分为: ExecutorType.SIMPLE: 这个执行器类型不做特殊的事情.它为每个语句的执行 ...
- 【Python】【Module】hashlib
用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 import hashlib # ######## ...