Scale-Invariant Error
概
看这篇文章单纯是为了看一看这个scale-invariant error.
主要内容
我们时常通过平方误差来衡量两个图片的差异, 但是这个损失是很依赖与scale的.
比如, 有两个图片\(\bm{x}, \bm{x}'\), 则其误差为
\]
倘若此时\(x\)的每一个元素都增加了\(c\), 则变成了
\]
这个实际不是非常友好的, 我们是希望这个损失最好是Scale-Invariant的, 所以我们在损失的部分加入一个值
\]
注意, 这里的\(\bm{x}\)可以理解为\(\bm{x} + c\), 那么选择一个怎样的\(\alpha\)能够使得上述的误差最小呢(关于特定的\(\bm{x}, \bm{x}'\)).
\alpha = \frac{1}{n} (\bm{x}'- \bm{x})^T \bm{1} = \frac{1}{n}\sum_{i=1}^n (x_i' - x_i).
\]
故, 最后的损失函数是
\]
注: 如果我们将像素置于对数空间, 即考虑\(\log \bm{x}\), 则上述实际上考虑的\(c \cdot \bm{x}\) 的scale.
代码
import torch
import torch.nn as nn
import torch.nn.functional as F
def scale_invariant_loss(outs: torch.Tensor, targets: torch.Tensor, reduction="mean"):
"""
outs: N ( x C) x H x W
targets: N ( x C) x H x W
reduction: ...
"""
outs = outs.flatten(start_dim=1)
targets = targets.flatten(start_dim=1)
alpha = (targets - outs).mean(dim=1, keepdim=True)
return F.mse_loss(outs + alpha, targets, reduction=reduction)
Scale-Invariant Error的更多相关文章
- Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来 ...
- 【尺度不变性】An Analysis of Scale Invariance in Object Detection – SNIP 论文解读
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
- 卷积神经网络CNN
卷积神经网络,在图像识别和自然语言处理中有很大的作用,讲cnn的中文博客也不少,但是个人感觉说的脉络清晰清晰易懂的不多. 无意中看到这篇博客,写的很好,图文并茂.建议英文好的直接去看原文.英文不好的就 ...
- Introduction to debugging neural networks
http://russellsstewart.com/notes/0.html The following advice is targeted at beginners to neural netw ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- SIFT(Scale-invariant feature transform) & HOG(histogram of oriented gradients)
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提 ...
- 记录Debug神经网络的方法
debugNNIntroduction to debugging neural networksThe following advice is targeted at beginners to neu ...
随机推荐
- Linux—禁止用户SSH登录方法总结
Linux-禁止用户SSH登录方法总结 一.禁止用户登录 1.修改用户配置文件/etc/shadow 将第二栏设置为"*",如下.那么该用户就无法登录.但是使用这种方式 ...
- spring注解-组件注册
一.@Configuration+@Bean @Configuration:配置类==配置文件 @Bean:给容器中注册一个Bean:类型为返回值的类型,默认是用方法名作为id @Bean(" ...
- LR中的快捷建
Ctrl+F 弹出搜索对话框 CTRL+F8 弹出view tree 界面 (寻找关联) 觉得不错的可关注微信公众号在手机上观看,让你用手机边玩边看
- virtualBox 系统移植
把virtualbox已经存在的系统移植到其他机器. 1.把系统如下文件考到一个安装了virtualbox的机器. 2.点击控制-->注册 然后浏览到复制的文件路径. 3.修改uuid 不管是l ...
- java面试--(生成随机数,获取重复次数最多,并且数是最大的一个,打印出来)
import java.util.*; public class MaxRandom { public static void main(String[] args){ int[] num = new ...
- VUE页面实现加载外部HTML方法
前后端分离,后端提供了接口.但有一部分数据,比较产品说明文件,是存在其他的服务器上的.所以,在页面显示的时候,如果以页面内嵌的形式显示这个说明文件.需要搞点事情以达到想要的效果.本文主要和大家介绍VU ...
- 看看线程特有对象ThreadLocal
作用:设计线程安全的一种技术. 在使用多线程的时候,如果多个线程要共享一个非线程安全的对象,常用的手段是借助锁来实现线程的安全.线程安全隐患的前提是多线程共享一个不安全的对象 ,那么有没有办法让线程之 ...
- angular过滤器在html和js中的使用
在HTML中使用格式为:{{数据 | 过滤器名称:条件一:条件二--}}:过滤条件间使用:隔开 例如: 在代码中一般格式为: 变量 = $filter("过滤器名称")(被过滤数 ...
- 【C/C++】例题3-5 生成元/算法竞赛入门经典/数组与字符串
[题目] x+x的各位数之和为y,x为y的生成元. 求10万以内的n的最小生成元,无解输出0. [解答] 这是我根据自己的想法最初写的代码: #include<cstdio> #inclu ...
- [BUUCTF]REVERSE——reverse2
reverse2 附件 例行检查,64位目标 64位ida载入,首先shift+f12检索程序里的字符串 得到了"this is the right flag!" 的提示字符串,还 ...