Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

前10章介绍了一些基本概念, 从这一章开始, 将通过模型进一步分析.

11.1 Data cannot speak for themselves

我们要估计\(\mathbb{E}[Y|A=a]\), 但是可能由于数据有限, 或者\(A\)甚至是一个连续的变量, 则我们没有办法对每一个\(a\)进行估计.

这厮我们可以引入模型, 比如假设\(\mathbb{E}[Y|A=a]=\theta_0 + \theta_1 A\), 然后去估计\(\hat{\theta}_0, \hat{\theta}_1\).

11.2 Parametric estimators of the conditional mean

11.3 Nonparametric estimators of the conditional mean

当\(A \in \{0, 1\}\)的时候, 我们可以发现:

\[\mathbb{E}[Y|A=0] = \theta_0, \\
\mathbb{E}[Y|A=1] = \theta_0 + \theta_1.
\]

我们的有参模型这个时候就相当于是无参模型.

11.4 Smoothing

实际上, 我们可以把我们的模型假设得更加复杂一点:

\[\mathbb{E}[Y|A] = \theta_0 + \theta_1A + \theta_2A^2.
\]

一个很自然的结论是, 这种线性模型, 参数越少模型越光滑.

The bias-variance trade-off

一般来说, 选择复杂的模型会有更小的bias, 但是又更大的variance.

Fine Point

Fisher consistency

That is, an estimator of a population quantity that,

when calculated using the entire population rather than a sample,

yields the true value of the population parameter.

就是说一个模型, 用了全部的population就能获得正确的参数, 那么这个模型就是非参数模型.

就像均值一样?

Model dimensionality and the relation between frequentist and Bayesian intervals

Technical Point

A taxonomy of commonly used models

\[g \{\mathbb{E}[Y|X]\} = \sum_{i=0}^p \theta_i X_i.
\]

Chapter 11 Why Model ?的更多相关文章

  1. Chapter 11. Frame, MainWindow, and Toplevel Widgets 框架,主窗体,顶级部件

    Chapter 11. Frame, MainWindow, and Toplevel Widgets   框架,主窗体,顶级部件 框架和Toplevels 都是设计用于其他部件的容器. 它们的不同在 ...

  2. 零元学Expression Blend 4 - Chapter 11 用实例了解布局容器系列-「Border」

    原文:零元学Expression Blend 4 - Chapter 11 用实例了解布局容器系列-「Border」 将教大家以实做案例认识Blend 4 的布局容器,此章介绍的布局容器是Blend ...

  3. Think Python - Chapter 11 - Dictionaries

    Dictionaries A dictionary is like a list, but more general. In a list, the indices have to be intege ...

  4. Thinking in Java from Chapter 11

    From Thinking in Java 4th Edition 持有对象 // Simple container example (produces compiler warnings.) // ...

  5. java系列:《java核心技术 卷1》学习笔记,chapter 11 调试技巧

    11. 6 调试技巧 1)一个不太为人所知却非常有效的技巧是在每个类中放一个main方法,这样就可以对每个类进行单元测试.这个方法可以保留,因为在java虚拟机只调用启动类的main方法. 2)   ...

  6. go chapter 11 初始化 map 数组

    // 初始化 map m1 = make(map[string]string) // 初始化 数组 var array3 = []int{9, 10, 11, 12} var a [4]int a[0 ...

  7. 菜鸟笔记 -- Chapter 11 格式化

    我们在String中介绍过它有一个格式化的方法,在其它很多地方,也都能看到格式化的操作,那么这节我们就来认真了解一下Java中的格式化操作. 我们在操作中涉及到的格式化有字符串的格式化和一些其它数据类 ...

  8. 11.树形Model/View实例

    任务1:显示如图的树形结构 思考: 1.使用QTreeView显示. 2.Model使用QStandardItemModel,qt的一个标准model. 3.QStandardItemModel下每一 ...

  9. 深入理解计算机系统_3e 第十一章家庭作业 CS:APP3e chapter 11 homework

    注:tiny.c csapp.c csapp.h等示例代码均可在Code Examples获取 11.6 A. 书上写的示例代码已经完成了大部分工作:doit函数中的printf("%s&q ...

随机推荐

  1. 日常Java 2021/9/21

    将Java数组中的元素前后反转.题目要求:已知一个数组arr = {11,12,13,14,15}用程序实现把该数组中的元素值交换,交换后的数组arr = { 15,14,13,12,11},并输出交 ...

  2. day12 keepalived高可用

    day12 keepalived高可用 一.高可用介绍 1.什么是高可用 部署在整个集群中的一个高可用软件,作用是创建一个VIP(虚拟IP),在整个集群中有且只有一个机器上生成VIP,当这台机器出现问 ...

  3. Sibel Tools和Siebel Cilent的安装步骤

    关于Siebel的资料在网上是少之又少,当时安装开发工具的时候花了挺长时间的,把步骤记录了下来. 一安装win32_11gR2_client 首先要安装Oracle数据库的客户端,必须是32位,安装过 ...

  4. Virtual functions in derived classes

    In C++, once a member function is declared as a virtual function in a base class, it becomes virtual ...

  5. RAC(Reactive Cocoa)常见的类

    导入ReactiveCocoa框架 在终端,进入Reactive Cocoa文件下 创建podfile 打开该文件 并配置 use_frameworks! pod 'ReactiveCocoa', ' ...

  6. OpenStack之六: plancement服务(端口8778)

    官网地址:https://docs.openstack.org/placement/stein/install/install-rdo.html #:创建placement库,并授权 MariaDB ...

  7. shell脚本 检查mysql节点数据一致性

    一.简介 源码地址 日期:2018/4/12 介绍:参考pt checksum思想改写,可以定制化的检查随意两个mysql节点的数据一致性. 功能: 检查随意两个几点的数据一致性 支持并发检查,基于库 ...

  8. [BUUCTF]PWN——[ZJCTF 2019]Login

    [ZJCTF 2019]Login 附件 步骤: 例行检查,64位程序,开启了canary和nx保护 2. 试运行一下程序 3. 64位ida载入,检索字符串,在程序里找到了用户名admin和密码2j ...

  9. AT3589 Similar Arrays 题解

    Content 给定一个长度为 \(n\) 的序列 \(a\).定义两个序列 \(x,y\) 是相似的,当且仅当 \(\forall i\in[1,n],|x_i-y_i|\leqslant 1\). ...

  10. CF581B Luxurious Houses 题解

    Content 一条大街上有 \(n\) 个房子,第 \(i\) 个房子的楼层数量是 \(h_i\).如果一个房子的楼层数量大于位于其右侧的所有房屋,则房屋是豪华的.对于第 \(i\) 个房子,请求出 ...