Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

前10章介绍了一些基本概念, 从这一章开始, 将通过模型进一步分析.

11.1 Data cannot speak for themselves

我们要估计\(\mathbb{E}[Y|A=a]\), 但是可能由于数据有限, 或者\(A\)甚至是一个连续的变量, 则我们没有办法对每一个\(a\)进行估计.

这厮我们可以引入模型, 比如假设\(\mathbb{E}[Y|A=a]=\theta_0 + \theta_1 A\), 然后去估计\(\hat{\theta}_0, \hat{\theta}_1\).

11.2 Parametric estimators of the conditional mean

11.3 Nonparametric estimators of the conditional mean

当\(A \in \{0, 1\}\)的时候, 我们可以发现:

\[\mathbb{E}[Y|A=0] = \theta_0, \\
\mathbb{E}[Y|A=1] = \theta_0 + \theta_1.
\]

我们的有参模型这个时候就相当于是无参模型.

11.4 Smoothing

实际上, 我们可以把我们的模型假设得更加复杂一点:

\[\mathbb{E}[Y|A] = \theta_0 + \theta_1A + \theta_2A^2.
\]

一个很自然的结论是, 这种线性模型, 参数越少模型越光滑.

The bias-variance trade-off

一般来说, 选择复杂的模型会有更小的bias, 但是又更大的variance.

Fine Point

Fisher consistency

That is, an estimator of a population quantity that,

when calculated using the entire population rather than a sample,

yields the true value of the population parameter.

就是说一个模型, 用了全部的population就能获得正确的参数, 那么这个模型就是非参数模型.

就像均值一样?

Model dimensionality and the relation between frequentist and Bayesian intervals

Technical Point

A taxonomy of commonly used models

\[g \{\mathbb{E}[Y|X]\} = \sum_{i=0}^p \theta_i X_i.
\]

Chapter 11 Why Model ?的更多相关文章

  1. Chapter 11. Frame, MainWindow, and Toplevel Widgets 框架,主窗体,顶级部件

    Chapter 11. Frame, MainWindow, and Toplevel Widgets   框架,主窗体,顶级部件 框架和Toplevels 都是设计用于其他部件的容器. 它们的不同在 ...

  2. 零元学Expression Blend 4 - Chapter 11 用实例了解布局容器系列-「Border」

    原文:零元学Expression Blend 4 - Chapter 11 用实例了解布局容器系列-「Border」 将教大家以实做案例认识Blend 4 的布局容器,此章介绍的布局容器是Blend ...

  3. Think Python - Chapter 11 - Dictionaries

    Dictionaries A dictionary is like a list, but more general. In a list, the indices have to be intege ...

  4. Thinking in Java from Chapter 11

    From Thinking in Java 4th Edition 持有对象 // Simple container example (produces compiler warnings.) // ...

  5. java系列:《java核心技术 卷1》学习笔记,chapter 11 调试技巧

    11. 6 调试技巧 1)一个不太为人所知却非常有效的技巧是在每个类中放一个main方法,这样就可以对每个类进行单元测试.这个方法可以保留,因为在java虚拟机只调用启动类的main方法. 2)   ...

  6. go chapter 11 初始化 map 数组

    // 初始化 map m1 = make(map[string]string) // 初始化 数组 var array3 = []int{9, 10, 11, 12} var a [4]int a[0 ...

  7. 菜鸟笔记 -- Chapter 11 格式化

    我们在String中介绍过它有一个格式化的方法,在其它很多地方,也都能看到格式化的操作,那么这节我们就来认真了解一下Java中的格式化操作. 我们在操作中涉及到的格式化有字符串的格式化和一些其它数据类 ...

  8. 11.树形Model/View实例

    任务1:显示如图的树形结构 思考: 1.使用QTreeView显示. 2.Model使用QStandardItemModel,qt的一个标准model. 3.QStandardItemModel下每一 ...

  9. 深入理解计算机系统_3e 第十一章家庭作业 CS:APP3e chapter 11 homework

    注:tiny.c csapp.c csapp.h等示例代码均可在Code Examples获取 11.6 A. 书上写的示例代码已经完成了大部分工作:doit函数中的printf("%s&q ...

随机推荐

  1. day07 ORM中常用字段和参数

    day07 ORM中常用字段和参数 今日内容 常用字段 关联字段 测试环境准备 查询关键字 查看ORM内部SQL语句 神奇的双下划线查询 多表查询前提准备 常用字段 字段类型 AutoField in ...

  2. C++之数组转换

    题目如下: 这道题经过好久的思考也没找到能一次性输入两组数的方法,只能一次性处理一组数,所以就把代码放上来,欢迎交流留言一起讨论可以放两组数的方法~(QQ 841587906) 1 #include ...

  3. d3基础入门一-选集、数据绑定等核心概念

    引入D3 D3下载,本文下载时的版本为6.5.0 mkdir d3.6.5.0 unzip --help unzip d3.zip -d d3.6.5.0/ ls d3.6.5.0/ API.md C ...

  4. 【编程思想】【设计模式】【行为模式Behavioral】中介者模式Mediator

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/mediator.py #!/usr/bin/env py ...

  5. Ajax异步更新网页(使用jQuery)

    jquery下载链接:https://pan.baidu.com/s/1KWQVpPV-RwhwGeBaXbZdVA 提取码:vn7x 一.页面代码 <!DOCTYPE html> < ...

  6. 如何优雅正确地通过interrupt方法中断线程

    为什么废弃Thread的stop函数? 简单来说就是stop方法中断线程太过暴力随意,且会是否线程持有的锁,会导致线程安全问题.还有可能导致存在需要被释放的资源得不到释放,引发内存泄露.所以用stop ...

  7. python3约瑟夫环问题

    问题描述:n个人围成一个圈,从第一个人开始数1,数到第k个出局,然后下一个人继续从1数,求出局人编号 思路:将所有人编号放到数组里,一个人出局后,下一个人加上k对数组长度求余,得出下一个要删除的编号. ...

  8. mobile app 与server通信的四种方式

    Have you ever wondered how the information gets into the application installed in your mobile device ...

  9. 主流微服务一站式解决方案Spring Cloud Alibaba入门看这篇就足够了

    学习路线 **本人博客网站 **IT小神 www.itxiaoshen.com 生态概述 架构演进 什么是微服务 https://martinfowler.com/microservices/ Mic ...

  10. .net 6 (.net core) 发布到linux docker中

    第一步:VMware 安装 虚拟机Linux系统,本文以 CentOS 为例 .