CF893B Beautiful Divisors 题解
Content
给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\)。
数据范围:\(1\leqslant n\leqslant 10^5\)。
Solution
数据范围很小,所以我们先考虑将 \(10^5\) 以内的能够表示成 \((2^k-1)\cdot2^{k-1}\) 形式的数全部通过打表生成出来。而且打完以后,我们发现,事实上满足这个条件的数在 \(10^5\) 以内只有 \(8\) 个:\(1,6,28,120,496,2016,8128,32640\)。
然后输入完 \(n\),就直接从 \(n\) 开始往 \(1\) 直接枚举,一旦找出了可以表示成 \((2^k-1)\cdot2^{k-1}\) 的因数就直接输出即可。
Code
int num[17], n, cnt, vis[200007];
int main() {
while(num[cnt] <= 100000) ++cnt, num[cnt] = (1 << (2 * cnt - 1)) - (1 << (cnt - 1));
F(int, i, 1, cnt) vis[num[i]] = 1;
n = Rint;
R(int, i, n, 1) if(vis[i] && !(n % i)) return write(i), 0;
return 0;
}
CF893B Beautiful Divisors 题解的更多相关文章
- codeforces 893B Beautiful Divisors 打表
893B Beautiful Divisors 思路: 打表 代码: #include <bits/stdc++.h> using namespace std; #define _for( ...
- Educational Codeforces Round 33 (Rated for Div. 2) B. Beautiful Divisors【进制思维/打表】
B. Beautiful Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- 【SP26073】DIVCNT1 - Counting Divisors 题解
题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\ ...
- 【Educational Codeforces Round 33 B】Beautiful Divisors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把所有的那些数字打表出来. 逆序枚举就好 [代码] /* 1.Shoud it use long long ? 2.Have you ...
- CF1265B Beautiful Numbers 题解
Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...
- UVA294 约数 Divisors 题解
Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\le ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
- HDU5179 beautiful number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5179 题目大意: 给你一个数 \(A = a_1a_2 \cdots a_n\) ,我们称 \(A\) ...
随机推荐
- GraalVM最佳实践,使用Java开发CLI、Desktop(JavaFX)、Web(SpringBoot)项目,并使用native-image技术把Java代码静态编译为独立可执行文件(本机映像)
原创文章,转载请注明出处! 源码地址: Gitee Gtihub 介绍 GraalVM最佳实践,使用Java开发CLI.Desktop(JavaFX).Web(SpringBoot)项目,并使用nat ...
- [USACO07MAR]Face The Right Way G
发现选定一个长度后,怎么翻转是固定的. 那我们直接选定一个长度去操作就行. 优化操作过程 类似于堆里打持久化标记一样的感觉. [USACO07MAR]Face The Right Way G // P ...
- R语言与医学统计图形-【18】ggplot2几何对象汇总
ggplot2绘图系统--几何对象汇总 前面介绍了常见的几种基本的几何对象,并且介绍了scale.stat等其他要素.后续将介绍position.themes.coord和faceting等函数. 这 ...
- micropython1.16官方文档转PDF
折腾了一天,终于把micropython1.16的官方文档给转成了pdf格式. 不过转换成PDF格式以后存在两点问题: 1.PDF文档有些地方的排版中有些行距没有调整好: 2.使用latex编译tex ...
- android Fragment跳转Fragment
android Fragment跳转Fragment,最新的android studio3 在系统模板建立的BottomNavigationView 中跳转方式 此版本下不能用FragmentMana ...
- 数据分析体系 — 用户粘性的两个计算指标(DAU/MAU和月人均活跃天数)
很多运营都了解DAU(日活跃用户数)和MAU(月活跃用户数)的重要性,但在某些情况下这两个数值本身并不能反映出太多问题,这个时候就要引用到[DAU/MAU]的概念,即[日活/月活] 用户粘性的两个计算 ...
- 学习java 7.3
学习内容:定义类不需要加static 成员方法在多个对象时是可以共用的,而成员变量不可以共用,多个对象指向一个内存时,改变变量的值,对象所在的类中的变量都会改变 成员变量前加private,成员方法前 ...
- SpringBoot之HandlerInterceptorAdapter
SpringBoot之HandlerInterceptorAdapter 在SpringBoot中我们可以使用HandlerInterceptorAdapter这个适配器来实现自己的拦截器.这样就 ...
- 【leetcode】633. Sum of Square Numbers(two-sum 变形)
Given a non-negative integer c, decide whether there're two integers a and b such that a2 + b2 = c. ...
- entfrm-boot开发平台一览【entfrm开源模块化无代码开发平台】
介绍 entfrm-boot是一个以模块化为核心的无代码开发平台,能够让中小企业快速从零搭建自己的开发平台:开箱即用,可插拔可自由组合:以模块化的方式,最大化的代码复用,避免重复开发:无代码可视化开发 ...