CF893B Beautiful Divisors 题解
Content
给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\)。
数据范围:\(1\leqslant n\leqslant 10^5\)。
Solution
数据范围很小,所以我们先考虑将 \(10^5\) 以内的能够表示成 \((2^k-1)\cdot2^{k-1}\) 形式的数全部通过打表生成出来。而且打完以后,我们发现,事实上满足这个条件的数在 \(10^5\) 以内只有 \(8\) 个:\(1,6,28,120,496,2016,8128,32640\)。
然后输入完 \(n\),就直接从 \(n\) 开始往 \(1\) 直接枚举,一旦找出了可以表示成 \((2^k-1)\cdot2^{k-1}\) 的因数就直接输出即可。
Code
int num[17], n, cnt, vis[200007];
int main() {
while(num[cnt] <= 100000) ++cnt, num[cnt] = (1 << (2 * cnt - 1)) - (1 << (cnt - 1));
F(int, i, 1, cnt) vis[num[i]] = 1;
n = Rint;
R(int, i, n, 1) if(vis[i] && !(n % i)) return write(i), 0;
return 0;
}
CF893B Beautiful Divisors 题解的更多相关文章
- codeforces 893B Beautiful Divisors 打表
893B Beautiful Divisors 思路: 打表 代码: #include <bits/stdc++.h> using namespace std; #define _for( ...
- Educational Codeforces Round 33 (Rated for Div. 2) B. Beautiful Divisors【进制思维/打表】
B. Beautiful Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- 【SP26073】DIVCNT1 - Counting Divisors 题解
题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\ ...
- 【Educational Codeforces Round 33 B】Beautiful Divisors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把所有的那些数字打表出来. 逆序枚举就好 [代码] /* 1.Shoud it use long long ? 2.Have you ...
- CF1265B Beautiful Numbers 题解
Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...
- UVA294 约数 Divisors 题解
Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\le ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
- HDU5179 beautiful number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5179 题目大意: 给你一个数 \(A = a_1a_2 \cdots a_n\) ,我们称 \(A\) ...
随机推荐
- 收集的常用的CTF学习资源网站
http://www.sec-wiki.com/skill/ 安全技能学习路线(迷茫就看它) https://wiki.x10sec.org/ 介绍了CTF各个方向的基础知识 ...
- bean注解
1.beans.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns:xsi=&qu ...
- JavaWeb 请求转发重定向
请求转发和重定向 request除了可以作为请求对象之外,还可以作为域对象,但是该域对象的取值范围,是一次请求范围之内(浏览器地址栏没有发生跳转访问别的资源) 作用:将servlet中的数据通过req ...
- LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)
题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \( ...
- Linux—su命令和su -命令的差别(切换登录账号)
1.普通用户切换到root用户,命令su或su - 本人以前一直习惯直接使用root,很少使用su,前几天才发现su与su -命令是有着本质区别的! 大部分Linux发行版的默认账户是普通用户,而更改 ...
- 使用C语言来扩展PHP,写PHP扩展dll
转自http://www.cnblogs.com/myths/archive/2011/11/28/2266593.html 以前写过一次PHP扩展DLL,那个是利用调用系统的COM口实现的扩展,与P ...
- Identity Server 4 从入门到落地(四)—— 创建Web Api
前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...
- 34、在排序数组中查找元素的第一个和最后一个位置 | 算法(leetode,附思维导图 + 全部解法)300题
零 标题:算法(leetode,附思维导图 + 全部解法)300题之(34)在排序数组中查找元素的第一个和最后一个位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: / ...
- Qt最好用评价最高的是哪个版本?
来源: http://www.qtcn.org/bbs/read-htm-tid-89455.html /// Qt4: 4.8.7 4.X 系列终结版本 Qt5 : 5.6 LT ...
- 用usb线配置直流电机驱动器不能配置成功
原因可能是因为usb线的问题 换了三条usb线. 这三条都是通的,用万用表测试都是通的,但是进行电机配置的时候不行. 猜测原因可能是三条usb线的芯材质不同导致压降不同,使得通信故障.