CF893B Beautiful Divisors 题解
Content
给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\)。
数据范围:\(1\leqslant n\leqslant 10^5\)。
Solution
数据范围很小,所以我们先考虑将 \(10^5\) 以内的能够表示成 \((2^k-1)\cdot2^{k-1}\) 形式的数全部通过打表生成出来。而且打完以后,我们发现,事实上满足这个条件的数在 \(10^5\) 以内只有 \(8\) 个:\(1,6,28,120,496,2016,8128,32640\)。
然后输入完 \(n\),就直接从 \(n\) 开始往 \(1\) 直接枚举,一旦找出了可以表示成 \((2^k-1)\cdot2^{k-1}\) 的因数就直接输出即可。
Code
int num[17], n, cnt, vis[200007];
int main() {
while(num[cnt] <= 100000) ++cnt, num[cnt] = (1 << (2 * cnt - 1)) - (1 << (cnt - 1));
F(int, i, 1, cnt) vis[num[i]] = 1;
n = Rint;
R(int, i, n, 1) if(vis[i] && !(n % i)) return write(i), 0;
return 0;
}
CF893B Beautiful Divisors 题解的更多相关文章
- codeforces 893B Beautiful Divisors 打表
893B Beautiful Divisors 思路: 打表 代码: #include <bits/stdc++.h> using namespace std; #define _for( ...
- Educational Codeforces Round 33 (Rated for Div. 2) B. Beautiful Divisors【进制思维/打表】
B. Beautiful Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- 【SP26073】DIVCNT1 - Counting Divisors 题解
题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\ ...
- 【Educational Codeforces Round 33 B】Beautiful Divisors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把所有的那些数字打表出来. 逆序枚举就好 [代码] /* 1.Shoud it use long long ? 2.Have you ...
- CF1265B Beautiful Numbers 题解
Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...
- UVA294 约数 Divisors 题解
Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\le ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
- HDU5179 beautiful number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5179 题目大意: 给你一个数 \(A = a_1a_2 \cdots a_n\) ,我们称 \(A\) ...
随机推荐
- 【NetWork】外网和内网
外网和内网 2019-11-16 11:22:37 by冲冲 1.内网 ① 内网的电脑们,需要经过交换机.路由器,才能访问Internet(外网). ② 因为外网IP比较紧张,现在的电脑普及使得外 ...
- 【Java面试题】-- Java String
Java String 2019-11-02 17:40:45 by冲冲 1.String的内存位置 String是定义在 java.lang 包下的一个类.它不是基本数据类型.String是不可 ...
- [NOIP2017 提高组] 列队
考虑我们需要维护的是这样一个东西. 即可能变化的只有每一行前\(m - 1\)个,和最后一列. 我们考虑对每一行开一个权值线段树,记录原本序列的第\(x\)个是否被一出,且用一个\(vector\)记 ...
- Codeforces Gym 101480C - Cow Confinement(扫描线+线段树)
题面传送门 题意: 有一个 \(10^6\times 10^6\) 的地图.其中 \(m\) 个位置上有花,\(f\) 个矩形外围用栅栏围了起来.保证 \(f\) 个矩形两两之间没有公共点. \(q\ ...
- expr判断是否为整数
判断一个变量值或字符串是否为整数 原理:利用expr计算时变量或字符串必须为整数的规则,把变量和一个整数(非零) 相加,判断命令返回是否为0,0--成功为整数 #!/bin/bash expr $1 ...
- 详细解析Thinkphp5.1源码执行入口文件index.php运行过程
详细解析Thinkphp5.1源码执行入口文件index.php运行过程 运行了public目录下的index.php文件后,tp的运行整个运行过程的解析 入口文件index.php代码如下: < ...
- VMware和Centos的安装及配置
目录 1. 安装VMware 2. 安装CentOS6及配置 2.1 Centos安装 2.1.1 配置网络连接的三种形式 2.1.1.1 桥连接 2.1.1.2 NAT模式 2.1.1.3 主机模式 ...
- Dreamweaver 2019 软件安装教程
下载链接:https://www.sssam.com/1220.html#软件简介 Adobe Dreamweaver,简称"DW",DW是集网页制作和管理网站于一身的所见即所得网 ...
- JAVA中null,"",equals,==相互之间使用详解
"equals" 与 "==" "equals"只是比较值是否相同 而"=="则是比较两个变量是不是同一个变量,也应时是 ...
- 大型前端项目 DevOps 沉思录 —— CI 篇
摘要 DevOps 一词源于 Development 和 Operations 的组合,即将软件交付过程中开发与测试运维的环节通过工具链打通,并通过自动化的测试与监控,减少团队的时间损耗,更加高效稳定 ...