LuoguP7714 「EZEC-10」排列排序 题解
Content
给定一个 \(1\sim n\) 的一个排列 \(p\),你每次可以选择一个区间 \([l,r]\) 并花费 \(r-l+1\) 的代价将下标在这个区间内的所有数升序排序,求使得排列 \(p\) 从 \(1\sim n\) 按升序排序的最少代价。
数据范围:\(t\) 组数据,\(1\leqslant t,\sum n\leqslant 10^6\)。
Solution
我们直接来考虑正解。
我们不妨考虑怎样去选择区间才能做到最小代价,然后我们不难想到这样的贪心做法:如果一段区间 \([l,r]\) 里面的所有数是一个 \(l\sim r\) 的一种排列并且区间长度不为 \(1\)(长度为 \(1\) 的话不需要花费 \(1\) 的代价去升序排列这个区间),那么我们就立即选择这一个区间翻转,并更新下一个需要翻转的区间的左端点。这样可以保证花费的代价是最小的。
具体如何判断一段区间 \([l,r]\) 里面的所有数是一个 \(l\sim r\) 的一种排列,我们只需要边输入的时候边判断前缀区间 \([1,i]\) 中的数的最大值是否就是 \(i\) 即可,详情请看代码。
Code
int p[1000007];
int main() {
MT {
int n = Rint, maxi = 0, ans = 0, l = 1;
F(int, i, 1, n) {
p[i] = Rint, maxi = max(maxi, p[i]);
if(maxi == i) ans += (i - l + 1 != 1) * (i - l + 1), l = i + 1; //这里将 (i - l + 1 != 1) 当做一个 0/1 值,可以省略掉一个 if
}
println(ans1);
}
return 0;
}
LuoguP7714 「EZEC-10」排列排序 题解的更多相关文章
- 「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...
- loj #2509. 「AHOI / HNOI2018」排列
#2509. 「AHOI / HNOI2018」排列 题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的 ...
- 「CTSC 2011」排列
「CTSC 2011」排列 要求不存在公差为 A 或者公比为 B 的子列,那么实际上可以把该问题转化为求一个图的最优拓朴序. 任意差为 A 或者比为 B 的两个数连一条边. 求一个合法序列的答案可以用 ...
- 【LOJ】#2509. 「AHOI / HNOI2018」排列
题解 虽然要求一个dfs序,但是不是从根开始贪心 从最小的点开始贪心,最小的点显然是父亲选了之后马上就选它 那么我们每次把最小的点和父亲合并,两个联通块之间也是如此 对于两个联通块,他们合并的顺序应该 ...
- loj#2509. 「AHOI / HNOI2018」排列(思维题 set)
题意 题目链接 Sol 神仙题Orz 首先不难看出如果我们从\(a_i\)向\(i\)连一条边,我们会得到以\(0\)为根的树(因为每个点一定都有一个入度,出现环说明无解),同时在进行排列的时候需要保 ...
- 「ZJOI 2010」 排列计数
题目链接 戳我 \(Solution\) 其实我们可以发现这题等价于让你求: 用\(1\)~\(n\)的数组成一个完全二叉树使之满足小根堆性质的方案数 于是我们可以考虑\(dp\) 假设我们现在在\( ...
- LuoguP7127 「RdOI R1」一次函数(function) 题解
Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
随机推荐
- 在安卓开发中需要格式化桌面icon图标
使用以下在线工具即可实现http://www.makeicon.cc/home/index
- es基本概念
电商实时数据分析平台需要学些什么? [运营指标,流量指标,销售转化指标,客户价值指标,商品指标,营销指标,风险控制指标,市场竞争指标]等电商指标数据. 检索,数据更新,排序,分词,query等缓存机 ...
- SpringMVC学习笔记---依赖配置和简单案例实现
初识SpringMVC 实现步骤: 新建一个web项目 导入相关jar包 编写web.xml,注册DispatcherServlet 编写springmvc配置文件 接下来就是去创建对应的控制类 , ...
- c++基础知识02
1.前置与后置区别 #include<iostream> using namespace std; int main() { //前置和后置区别 //前置递增或递减 先让变量加减1 然后进 ...
- 关于 KB/KiB、MB/MiB
ermmm--怎么说呢,这个非常容易搞混,那就写篇 blog 澄清一下吧-- 首先贴上百度百科的官方定义 根据国际单位制标准,1KB = 1000B(字节, Byte). 根据按照 IEC 命名标准 ...
- Mysql-多个left join 计算逻辑
单个left join: (1)一对一:结果表的行数=左表行数 (2)一对多:结果表的行数>左表行数 多个left join: (0)多个left join由上到下,依次生成查询表,原理同单个l ...
- mysql—mysql查询语句提示Unknown column ‘xxx’ in ‘where clause’
运行结果中提示Unknown column 'xxx' in 'where clause'的问题.经过大神的指导,顿时明白其中缘由,如果sql中定义的类型是int型的可以不用加引号,但是如果是字符串类 ...
- 零基础学习java------day4------流程控制结构
1. 顺序结构 代码从上往下依次执行 2. 选择结构 也叫分支结构,其会根据执行的结果选择不同的代码执行,有以下两种形式: if 语句 switch 语句 2.1 if 语句 2.1.1 if语 ...
- Java Swing布局管理器GridBagLayout的使用示例 [转]
GridBagLayout是java里面最重要的布局管理器之一,可以做出很复杂的布局,可以说GridBagLayout是必须要学好的的, GridBagLayout 类是一个灵活的布局管理器,它不要求 ...
- C++ 素数对猜想
我的解法是先将2到n的所有素数全部列出来,再计算.将全部的素数列出来用了一个叫"埃拉托色尼筛法"的方法. 算法参照这里:https://www.sohu.com/a/2526745 ...