在 go-zero 的分布式缓存系统分享里,Kevin 重点讲到过一致性hash的原理和分布式缓存中的实践。本文来详细讲讲一致性hash的原理和在 go-zero 中的实现。

以存储为例,在整个微服务系统中,我们的存储不可能说只是一个单节点。

  • 一是为了提高稳定,单节点宕机情况下,整个存储就面临服务不可用;
  • 二是数据容错,同样单节点数据物理损毁,而多节点情况下,节点有备份,除非互为备份的节点同时损毁。

那么问题来了,多节点情况下,数据应该写入哪个节点呢?

hash

所以本质来讲:我们需要一个可以将输入值“压缩”并转成更小的值,这个值通常状况下是唯一、格式极其紧凑的,比如uint64

  • 幂等:每次用同一个值去计算 hash 必须保证都能得到同一个值

这个就是 hash 算法完成的。

但是采取普通的 hash 算法进行路由,如:key % N 。有一个节点由于异常退出了集群或者是心跳异常,这时再进行 hash route ,会造成大量的数据重新 分发到不同的节点 。节点在接受新的请求时候,需要重新处理获取数据的逻辑:如果是在缓存中,容易引起 缓存雪崩

此时就需要引入 consistent hash 算法了。

consistent hash

我们来看看 consistent hash 是怎么解决这些问题的:

rehash

先解决大量 rehash 的问题:

如上图,当加入一个新的节点时,影响的key只有 key31,新加入(剔除)节点后,只会影响该节点附近的数据。其他节点的数据不会收到影响,从而解决了节点变化的问题。

这个正是:单调性。这也是 normal hash 算法无法满足分布式场景的原因。

数据倾斜

其实上图可以看出:目前多数的key都集中在 node 1 上。如果当 node 数量比较少的情况下,可以回引发多数 key 集中在某个 node 上,监控时发现的问题就是:节点之间负载不均。

为了解决这个问题,consistent hash 引入了 virtual node 的概念。

既然是负载不均,我们就人为地构造一个均衡的场景出来,但是实际 node 只有这么多。所以就使用 virtual node 划分区域,而实际服务的节点依然是之前的 node。

具体实现

先来看看 Get()

Get

先说说实现的原理:

  1. 计算 key 的hash
  2. 找到第一个匹配的 virtual node 的 index,并取到对应的 h.keys[index] :virtual node hash 值
  3. 对应到这个 ring 中去寻找一个与之匹配的 actual node

其实我们可以看到 ring 中获取到的是一个 []node 。这是因为在计算 virtual node hash ,可能会发生hash冲突,不同的 virtual node hash 对应到一个实际node。

这也说明:nodevirtual node 是一对多的关系。而里面的 ring 就是下面这个设计:

这个其实也就表明了一致性hash的分配策略:

  1. virtual node 作为值域划分。key 去获取 node ,从划分依据上是以 virtual node 作为边界
  2. virtual node 通过 hash ,在对应关系上保证了不同的 node 分配的key是大致均匀的。也就是 打散绑定
  3. 加入一个新的 node,会对应分配多个 virtual node。新节点可以负载多个原有节点的压力,从全局看,较容易实现扩容时的负载均衡。

Add Node

看完 Get 其实大致就知道整个一致性hash的设计:

type ConsistentHash struct {
hashFunc Func // hash 函数
replicas int // 虚拟节点放大因子
keys []uint64 // 存储虚拟节点hash
ring map[uint64][]interface{} // 虚拟节点与实际node的对应关系
nodes map[string]lang.PlaceholderType // 实际节点存储【便于快速查找,所以使用map】
lock sync.RWMutex
}

好了这样,基本的一个一致性hash就实现完备了。

具体代码:https://github.com/tal-tech/go-zero/blob/master/core/hash/consistenthash.go

使用场景

开头其实就说了,一致性hash可以广泛使用在分布式系统中:

  1. 分布式缓存。可以在 redis cluster 这种存储系统上构建一个 cache proxy,自由控制路由。而这个路由规则就可以使用一致性hash算法
  2. 服务发现
  3. 分布式调度任务

以上这些分布式系统中,都可以在负载均衡模块中使用。

项目地址

https://github.com/tal-tech/go-zero

欢迎使用 go-zero 并 star 支持我们!

微信交流群

关注『微服务实践』公众号并点击 交流群 获取社区群二维码。

一文搞懂一致性hash的原理和实现的更多相关文章

  1. 一文搞懂volatile的可见性原理

    说volatile之前,了解JMM(Java内存模型)有助于我们理解和描述volatile关键字.JMM是Java虚拟机所定义的一种抽象规范,用来屏蔽不同硬件和操作系统的内存访问差异,让Java程序在 ...

  2. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  3. 分布式缓存技术memcached学习(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...

  4. 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...

  5. 一文搞懂 Prometheus 的直方图

    原文链接:一文搞懂 Prometheus 的直方图 Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复 ...

  6. Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!

    本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...

  7. 一文搞懂指标采集利器 Telegraf

    作者| 姜闻名 来源|尔达 Erda 公众号 ​ 导读:为了让大家更好的了解 MSP 中 APM 系统的设计实现,我们决定编写一个<详聊微服务观测>系列文章,深入 APM 系统的产品.架构 ...

  8. 一文搞懂RAM、ROM、SDRAM、DRAM、DDR、flash等存储介质

    一文搞懂RAM.ROM.SDRAM.DRAM.DDR.flash等存储介质 存储介质基本分类:ROM和RAM RAM:随机访问存储器(Random Access Memory),易失性.是与CPU直接 ...

  9. 基础篇|一文搞懂RNN(循环神经网络)

    基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...

随机推荐

  1. GO学习-(13) Go语言基础之结构体

    Go语言基础之结构体 Go语言中没有"类"的概念,也不支持"类"的继承等面向对象的概念.Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性. ...

  2. TVM如何训练TinyML

    TVM如何训练TinyML 机器学习研究人员和从业人员对"裸机"(低功耗,通常没有操作系统)设备产生了广泛的兴趣.尽管专家已经有可能在某些裸机设备上运行某些模型,但是为各种设备优化 ...

  3. 立体显示与BCN双稳态手性向列相

    立体显示与BCN双稳态手性向列相 狭缝光栅立体显示 技术介绍: 人的左右眼间距大约是65MM,左右眼透过视差光栅看到不同的视角图像,经大脑融合形成立体视觉. 技术优点: 2D/3D可切换: 低成本: ...

  4. MindSpore模型推理

    MindSpore模型推理 如果想在应用中使用自定义的MindSpore Lite模型,需要告知推理器模型所在的位置.推理器加载模型的方式有以下三种: 加载本地模型. 加载远程模型. 混合加载本地和远 ...

  5. YOLOV4各个创新功能模块技术分析(三)

    YOLOV4各个创新功能模块技术分析(三)  八.数据增强相关-Stylized-ImageNet 论文名称:ImageNet-trained cnns are biased towards text ...

  6. 深入理解java虚拟机笔记Chapter2

    java虚拟机运行时数据区 首先获取一个直观的认识: 程序计数器 线程私有.各条线程之间计数器互不影响,独立存储. 当前线程所执行的字节码行号指示器.字节码解释器工作时通过改变这个计数器值选取下一条需 ...

  7. MySQL面试题汇总

    事务是什么? 一系列操作,要么全部完成,要么一个都不做 事务的ACID特性 原子性:一系列操作要么都执行,要么都不执行 一致性:事务执行前后数据完整性不变,如转账前后总金额不变 隔离性:多个事务并发访 ...

  8. 【数学】8.30题解-count数页码

    count 洛谷p1836 题目描述 一本书的页码是从 1-n 编号的连续整数: 1, 2, 3, ... , n.请你求出全部页码中 所有单个数字的和,例如第 123 页,它的和就是 1+2+3=6 ...

  9. 万字长文详解HiveSQL执行计划

    Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化.此外还 ...

  10. HTTP首部字段详解

    HTTP首部字段详解 在HTTP/1.1规范中定义了47种首部字段,总共分为四大类: 通用首部字段 -- 请求报文和响应报文两方都会使用的首部 请求首部字段 -- 从客户端向服务器端发送请求报文时使用 ...