在 go-zero 的分布式缓存系统分享里,Kevin 重点讲到过一致性hash的原理和分布式缓存中的实践。本文来详细讲讲一致性hash的原理和在 go-zero 中的实现。

以存储为例,在整个微服务系统中,我们的存储不可能说只是一个单节点。

  • 一是为了提高稳定,单节点宕机情况下,整个存储就面临服务不可用;
  • 二是数据容错,同样单节点数据物理损毁,而多节点情况下,节点有备份,除非互为备份的节点同时损毁。

那么问题来了,多节点情况下,数据应该写入哪个节点呢?

hash

所以本质来讲:我们需要一个可以将输入值“压缩”并转成更小的值,这个值通常状况下是唯一、格式极其紧凑的,比如uint64

  • 幂等:每次用同一个值去计算 hash 必须保证都能得到同一个值

这个就是 hash 算法完成的。

但是采取普通的 hash 算法进行路由,如:key % N 。有一个节点由于异常退出了集群或者是心跳异常,这时再进行 hash route ,会造成大量的数据重新 分发到不同的节点 。节点在接受新的请求时候,需要重新处理获取数据的逻辑:如果是在缓存中,容易引起 缓存雪崩

此时就需要引入 consistent hash 算法了。

consistent hash

我们来看看 consistent hash 是怎么解决这些问题的:

rehash

先解决大量 rehash 的问题:

如上图,当加入一个新的节点时,影响的key只有 key31,新加入(剔除)节点后,只会影响该节点附近的数据。其他节点的数据不会收到影响,从而解决了节点变化的问题。

这个正是:单调性。这也是 normal hash 算法无法满足分布式场景的原因。

数据倾斜

其实上图可以看出:目前多数的key都集中在 node 1 上。如果当 node 数量比较少的情况下,可以回引发多数 key 集中在某个 node 上,监控时发现的问题就是:节点之间负载不均。

为了解决这个问题,consistent hash 引入了 virtual node 的概念。

既然是负载不均,我们就人为地构造一个均衡的场景出来,但是实际 node 只有这么多。所以就使用 virtual node 划分区域,而实际服务的节点依然是之前的 node。

具体实现

先来看看 Get()

Get

先说说实现的原理:

  1. 计算 key 的hash
  2. 找到第一个匹配的 virtual node 的 index,并取到对应的 h.keys[index] :virtual node hash 值
  3. 对应到这个 ring 中去寻找一个与之匹配的 actual node

其实我们可以看到 ring 中获取到的是一个 []node 。这是因为在计算 virtual node hash ,可能会发生hash冲突,不同的 virtual node hash 对应到一个实际node。

这也说明:nodevirtual node 是一对多的关系。而里面的 ring 就是下面这个设计:

这个其实也就表明了一致性hash的分配策略:

  1. virtual node 作为值域划分。key 去获取 node ,从划分依据上是以 virtual node 作为边界
  2. virtual node 通过 hash ,在对应关系上保证了不同的 node 分配的key是大致均匀的。也就是 打散绑定
  3. 加入一个新的 node,会对应分配多个 virtual node。新节点可以负载多个原有节点的压力,从全局看,较容易实现扩容时的负载均衡。

Add Node

看完 Get 其实大致就知道整个一致性hash的设计:

type ConsistentHash struct {
hashFunc Func // hash 函数
replicas int // 虚拟节点放大因子
keys []uint64 // 存储虚拟节点hash
ring map[uint64][]interface{} // 虚拟节点与实际node的对应关系
nodes map[string]lang.PlaceholderType // 实际节点存储【便于快速查找,所以使用map】
lock sync.RWMutex
}

好了这样,基本的一个一致性hash就实现完备了。

具体代码:https://github.com/tal-tech/go-zero/blob/master/core/hash/consistenthash.go

使用场景

开头其实就说了,一致性hash可以广泛使用在分布式系统中:

  1. 分布式缓存。可以在 redis cluster 这种存储系统上构建一个 cache proxy,自由控制路由。而这个路由规则就可以使用一致性hash算法
  2. 服务发现
  3. 分布式调度任务

以上这些分布式系统中,都可以在负载均衡模块中使用。

项目地址

https://github.com/tal-tech/go-zero

欢迎使用 go-zero 并 star 支持我们!

微信交流群

关注『微服务实践』公众号并点击 交流群 获取社区群二维码。

一文搞懂一致性hash的原理和实现的更多相关文章

  1. 一文搞懂volatile的可见性原理

    说volatile之前,了解JMM(Java内存模型)有助于我们理解和描述volatile关键字.JMM是Java虚拟机所定义的一种抽象规范,用来屏蔽不同硬件和操作系统的内存访问差异,让Java程序在 ...

  2. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  3. 分布式缓存技术memcached学习(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...

  4. 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...

  5. 一文搞懂 Prometheus 的直方图

    原文链接:一文搞懂 Prometheus 的直方图 Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复 ...

  6. Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!

    本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...

  7. 一文搞懂指标采集利器 Telegraf

    作者| 姜闻名 来源|尔达 Erda 公众号 ​ 导读:为了让大家更好的了解 MSP 中 APM 系统的设计实现,我们决定编写一个<详聊微服务观测>系列文章,深入 APM 系统的产品.架构 ...

  8. 一文搞懂RAM、ROM、SDRAM、DRAM、DDR、flash等存储介质

    一文搞懂RAM.ROM.SDRAM.DRAM.DDR.flash等存储介质 存储介质基本分类:ROM和RAM RAM:随机访问存储器(Random Access Memory),易失性.是与CPU直接 ...

  9. 基础篇|一文搞懂RNN(循环神经网络)

    基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...

随机推荐

  1. linux中用iptables开启指定端口

    linux中用iptables开启指定端口   centos默认开启的端口只有22端口,专供于SSH服务,其他端口都需要自行开启. 1.修改/etc/sysconfig/iptables文件,增加如下 ...

  2. 针对Spring MVC的Interceptor内存马

    针对Spring MVC的Interceptor内存马 目录 针对Spring MVC的Interceptor内存马 1 基础拦截器和调用流程的探索 1.1 基础拦截器 1.2 探索拦截器的调用链 1 ...

  3. Jittor 的Op, Var算子

    Jittor 的Op, Var算子 要使用jittor训练模型,需要了解两个主要概念: Var:Jittor的基本数据类型 Operations:Jittor的算子与numpy类似 首先,开始使用Va ...

  4. HiLink & LiteOS & IoT芯片 让IoT开发简单高效

    HiLink & LiteOS & IoT芯片让IoT开发简单高效 华为HiLink & LiteOS & IoT芯片使能三件套,让IoT开发更简单高效.下一代智能手机 ...

  5. 功率半导体碳化硅(SiC)技术

    功率半导体碳化硅(SiC)技术 Silicon Carbide Adoption Enters Next Phase 碳化硅(SiC)技术的需求继续增长,这种技术可以最大限度地提高当今电力系统的效率, ...

  6. Waymo的激光雷达计划:进展如何?

    Waymo的激光雷达计划:进展如何? Waymo's Lidar Plan: How's It Working out? 许多自动驾驶汽车(AV)开发商一直在热烈追求激光雷达技术,这一技术之所以重要, ...

  7. 72 个网络应用安全实操要点,全方位保护 Web 应用的安全

    原文地址:Web Application Security Checklist 原文作者:Teo Selenius(已授权) 译者 & 校正:HelloGitHub-小熊熊 & 卤蛋 ...

  8. jmeter链接mysql数据库

    一.下载与MySQL对应的jar包 1.1.查询MySQL的版本, 命令语句 :SELECT VERSION(); 1.2.MySQL官网下载jar包 ,https://downloads.mysql ...

  9. 总结springboot开启mybatis驼峰命名自动映射的三种方式

    方式一:通过springboot的配置文件application.yml mybatis: configuration: map-underscore-to-camel-case: true 此方式是 ...

  10. python取整函数 向上取整 向下取整 四舍五入

    向上取整 >>> import math >>> math.ceil(3.5) 4 >>> math.ceil(3.4) 4 >>&g ...