Loj#6247-九个太阳【单位根反演】
正题
题目大意
给出\(n,k\)求
\]
对\(998244353\)取模
\(1\leq n\leq 10^{15},1\leq k\leq 2^{20},k=2^p(p\in N)\)
解题思路
随便找的一题竟然是单位根反演,不过很基础而且很裸。
首先单位根反演的式子\([i|k]=\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^{i\times j}\)
然后带到这题的式子就是
\]
然后把\(j\)提出来
\]
然后二项式定理
\]
额但是\(n\)很大直接用复数精度肯定会炸,但是\(998244353-1=2^{23}\times 7\times 17\)...又因为\(k=2^p\),其实就是类似于\(NTT\)的思路我们直接用原根\(\omega_k^1=g^{\frac{P-1}{k}}\)就好了。
时间复杂度\(O(k\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=998244353;
ll n,k,ans;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&n,&k);
ll g=power(3,(P-1)/k),z=1;
for(ll i=0;i<k;i++,z=z*g%P)
(ans+=power(z+1,n)%P)%=P;
printf("%lld\n",ans*power(k,P-2)%P);
return 0;
}
Loj#6247-九个太阳【单位根反演】的更多相关文章
- loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理
LINK:九个太阳 不可做系列. 构造比较神仙. 考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\) 带入这道题的式子. 有\(\su ...
- loj #6247. 九个太阳
求 $\sum\limits_{i=1}^n [k | i] \times C_n^i$ 膜 $998244353$ $n \leq 10^{15},k \leq 2^{20}$ $k$ 是 $2$ ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...
随机推荐
- @ImportResource-SpringBoot使用xml配置Bean
前言 SpringBoot推荐使用注解的方式去声明bean,但还是提供了xml的方式去加载bean 一.创建要声明为bean的实体类 WzqEntity.java package com; /** * ...
- exportfs命令 – 管理NFS服务器共享的文件系统
exportfs命令需要参考配置文件"/etc/exportfs".也可以直接在命令行中指定要共享的NFS文件系统. 语法格式: export [参数] [目录] 常用参数: -a ...
- QT 自定义控件 以及信号和槽的使用
自定义login 控件 Login头文件 #ifndef LOGIN_H #define LOGIN_H #include <QWidget> namespace Ui { class L ...
- 传统表单提交文件上传,以及FormData异步ajax上传文件
传统的文件上传: 只用将form表单的entype修改成multipart/form-data,然后就可以进行文件上传,这种方式常用并且简单. 以下是另一种方式FormData,有时候我们需要ajax ...
- OVN架构
原文地址 OVN架构 1.简介 OVN,即Open Virtual Network,是一个支持虚拟网络抽象的系统. OVN补充了OVS的现有功能,增加了对虚拟网络抽象的原生(native)支持,比如虚 ...
- 虚拟机VMWare开机黑屏 无法进入系统
参考了: https://blog.csdn.net/x534119219/article/details/79497264 可能方案一: 关闭VMware Workstation加速3D图形设置 可 ...
- SDOI2021集训 R1 半夜 题解
先贴两个博客:ajthreac yspm,建议结合起来看 \(O(n^3)\):对 \(XX\) 每个长度为 \(n\) 的字串与 \(Y\) 跑 LCS.设 \(f[i,j,k]\) 表示 \(X[ ...
- 性能测试必备命令(4)- pstree
性能测试必备的 Linux 命令系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1819490.html 介绍 显示进程树 语法格式 ps ...
- Identity角色管理三(创建角色)
首先创建视图模型 using System.ComponentModel; using System.ComponentModel.DataAnnotations; namespace Shop.Vi ...
- BeanFactory和ApplicationContext对比
一.BeanFactory和ApplicationContext对比 其中,ApplicationContext容器即时加载,就是一加载配置文件,就会创建对象,且自动装配bean(即写道xml中bea ...