Loj#6247-九个太阳【单位根反演】
正题
题目大意
给出\(n,k\)求
\]
对\(998244353\)取模
\(1\leq n\leq 10^{15},1\leq k\leq 2^{20},k=2^p(p\in N)\)
解题思路
随便找的一题竟然是单位根反演,不过很基础而且很裸。
首先单位根反演的式子\([i|k]=\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^{i\times j}\)
然后带到这题的式子就是
\]
然后把\(j\)提出来
\]
然后二项式定理
\]
额但是\(n\)很大直接用复数精度肯定会炸,但是\(998244353-1=2^{23}\times 7\times 17\)...又因为\(k=2^p\),其实就是类似于\(NTT\)的思路我们直接用原根\(\omega_k^1=g^{\frac{P-1}{k}}\)就好了。
时间复杂度\(O(k\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=998244353;
ll n,k,ans;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&n,&k);
ll g=power(3,(P-1)/k),z=1;
for(ll i=0;i<k;i++,z=z*g%P)
(ans+=power(z+1,n)%P)%=P;
printf("%lld\n",ans*power(k,P-2)%P);
return 0;
}
Loj#6247-九个太阳【单位根反演】的更多相关文章
- loj #6247. 九个太阳 k次单位根 神仙构造 FFT求和原理
LINK:九个太阳 不可做系列. 构造比较神仙. 考虑FFT的求和原理有 \(\frac{1}{k}\sum_{j=0}^{k-1}(w_k^j)^n=[k|n]\) 带入这道题的式子. 有\(\su ...
- loj #6247. 九个太阳
求 $\sum\limits_{i=1}^n [k | i] \times C_n^i$ 膜 $998244353$ $n \leq 10^{15},k \leq 2^{20}$ $k$ 是 $2$ ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...
随机推荐
- 微信小程序自定义顶部
wxml <view style="height:{{titleHeight}}px;background:{{background}}" class="user- ...
- C++ template模板编程
模板是C++泛型编程的基础,一个模板就是一个创建类或者函数的蓝图或者公式.当使用一个vector这样的泛型类型,我们提供足够的信息,就可以将蓝图转换成特定的类或者函数. 假设我们编写一个函数来比较两个 ...
- C程序设计学习笔记(完结)
时间:2015-4-16 09:17 不求甚解,每有会意,欣然忘食.学习的过程是痛苦的 第1章 程序设计和C语言 第2章 算法--程序的灵魂 -算法的五个特点 ...
- Learning ROS: Roslaunch tips for large projects
Design tip: Top-level launch files should be short, and consist of include's to other files correspo ...
- 从零开始实现简单 RPC 框架 7:网络通信之自定义协议(粘包拆包、编解码)
当 RPC 框架使用 Netty 通信时,实际上是将数据转化成 ByteBuf 的方式进行传输. 那如何转化呢?可不可以把 请求参数 或者 响应结果 直接无脑序列化成 byte 数组发出去? 答:直接 ...
- Git 系列教程(10)- 仓库别名
Git 别名 前言 Git 并不会在你输入部分命令时自动推断出你想要的命令 如果不想每次都输入完整的 Git 命令,可以通过 git config 文件来轻松地为每一个命令设置一个别名 $ git c ...
- 计算字符串的长度.len,RuneCountInString
内置函数len(),可以返回字符串/数组/切片/map/channel的长度. unicode/utf8包 函数:RuneCountInString(输入一个字符串),返回int类型的字符串长度.由于 ...
- RabbitMQie消息列队整理
使用方法过程,这儿只做了windows平台教程 先安装Erlang 编程软件,然后设置环境变量,在安装RabbimMQ ,这儿我下载了一个版本不行,后来换了最新版就好了,以后在使用过程 中如果有问题 ...
- pip国内源设置
在目录 C:\Users\Administrator下新建pip目录 C:\Users\Administrator\pip 添加 pip.ini 文件 pip.ini内容设置为 [global] in ...
- C#委托与事件实用场景
首先,我们需要知道,到底在什么情况下必须使用委托和事件呢? 请看下面的场景:首领A要搞一场鸿门宴,吩咐部下B和C各自带队埋伏在屏风两侧,约定以杯为令:若左手举杯,则B带队杀出:若右手举杯,则C带队杀出 ...