963. Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes.
If there isn't any rectangle, return 0.
Example 1:
Input: [[1,2],[2,1],[1,0],[0,1]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.Example 2:
Input: [[0,1],[2,1],[1,1],[1,0],[2,0]]
Output: 1.00000
Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.Example 3:
Input: [[0,3],[1,2],[3,1],[1,3],[2,1]]
Output: 0
Explanation: There is no possible rectangle to form from these points.Example 4:
Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.
Note:
1 <= points.length <= 500 <= points[i][0] <= 400000 <= points[i][1] <= 40000- All points are distinct.
- Answers within
10^-5of the actual value will be accepted as correct.
Approach #1: Math. [Java]
class Solution {
public double minAreaFreeRect(int[][] points) {
int len = points.length;
if (len < 4) return 0.0;
double ret = Double.MAX_VALUE;
Map<String, List<int[]>> map = new HashMap<>();
for (int i = 0; i < len; ++i) {
for (int j = i+1; j < len; ++j) {
long diagonal = (points[i][0] - points[j][0]) * (points[i][0] - points[j][0]) +
(points[i][1] - points[j][1]) * (points[i][1] - points[j][1]);
double centerX = (double)(points[i][0] + points[j][0]) / 2;
double centerY = (double)(points[i][1] + points[j][1]) / 2;
String key = "" + diagonal + "+" + centerX + "+" + centerY;
if (map.get(key) == null) map.put(key, new ArrayList<int[]>());
map.get(key).add(new int[]{i, j});
}
}
for (String key : map.keySet()) {
List<int[]> list = map.get(key);
if (list.size() < 2) continue;
for (int i = 0; i < list.size(); ++i) {
for (int j = i+1; j < list.size(); ++j) {
int p1 = list.get(i)[0];
int p2 = list.get(j)[0];
int p3 = list.get(j)[1];
double x = Math.sqrt((points[p1][0] - points[p2][0]) * (points[p1][0] - points[p2][0])
+ (points[p1][1] - points[p2][1]) * (points[p1][1] - points[p2][1]));
double y = Math.sqrt((points[p1][0] - points[p3][0]) * (points[p1][0] - points[p3][0])
+ (points[p1][1] - points[p3][1]) * (points[p1][1] - points[p3][1]));
double area = x * y;
ret = Math.min(ret, area);
}
}
}
return ret == Double.MAX_VALUE ? 0.0 : ret;
}
}
Analysis:
1. Two diagonals of a rectangle bisect each other, and are of equal length.
2. The map's key is String including diagonal length and coordinate of the diagonal center; map's vlaue is the index of two points forming the diagonal.
Reference:
https://leetcode.com/problems/minimum-area-rectangle-ii/discuss/208361/JAVA-O(n2)-using-Map
963. Minimum Area Rectangle II的更多相关文章
- LC 963. Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- 【leetcode】963. Minimum Area Rectangle II
题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...
- 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...
- [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...
- Leetcode963. Minimum Area Rectangle II最小面积矩形2
给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴. 如果没有任何矩形,就返回 0. 示例 1: 输入:[[1,2],[2,1],[1,0] ...
- 计算几何-Minimum Area Rectangle II
2020-02-10 21:02:13 问题描述: 问题求解: 本题由于可以暴力求解,所以不是特别难,主要是用来熟悉计算几何的一些知识点的. public double minAreaFreeRect ...
- 【LeetCode】939. Minimum Area Rectangle 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 确定对角线,找另外两点(4sum) 字典保存出现的x ...
- [Swift]LeetCode939. 最小面积矩形 | Minimum Area Rectangle
Given a set of points in the xy-plane, determine the minimum area of a rectangle formed from these p ...
- LeetCode - Minimum Area Rectangle
Given a set of points in the xy-plane, determine the minimum area of a rectangle formed from these p ...
随机推荐
- EFCodeFirst Migrations数据库迁移
EFCodeFirst Migrations数据库迁移 数据库迁移 1.生成数据库 修改类文件PortalContext.cs的静态构造函数,取消当数据库模型发生改变时删除当前数据库重建新数据库的设置 ...
- 用 Hugo 快速搭建博客
用 Hugo 搭建博客 Hugo 是一个用 Go 编写的静态站点生成器,生成速度很快 下面是具体操作: 1.安装 Hugo Windows 用户 使用 Chocolatey 或者 Scoop 快速安装 ...
- ISC BIND9 - 最详细、最认真的从零开始的BIND 9 服务讲解
DNS and BIND 服务的搭建说明 目录 目录 DNS and BIND 服务的搭建说明 1. 背景 1.1 DNS 1.2 FQDN 1.3 BIND 1.4 本文中搭建模拟DNS服务网络虚拟 ...
- PAT-1102(Invert a Binary Tree)+二叉树的镜像+层次遍历+中序遍历+已知树的结构构树
Invert a Binary Tree pat-1102 import java.util.Arrays; import java.util.Queue; import java.util.Scan ...
- SpringMVC-01 什么是SpringMVC
SpringMVC-01 什么是SpringMVC 回顾MVC 1.什么是MVC MVC是模型(Model).视图(View).控制器(Controller)的简写,是一种软件设计规范. 是将业务逻辑 ...
- java 入门环境搭建
Java帝国的诞生 1972年C诞生 1982年C++诞生 1995年JAVA诞生,为了实现真正的跨平台,在操作系统之上又加了抽象层,叫做JAVA的虚拟机,统称JVM 三高问题: 高可用 高性能 高并 ...
- 漏洞复现-CVE-2018-15473-ssh用户枚举漏洞
0x00 实验环境 攻击机:Win 10 0x01 影响版本 OpenSSH 7.7前存在一个用户名枚举漏洞,通过该漏洞,攻击者可以判断某个用户名是否存在于目标主机 0x02 漏洞复现 针 ...
- CVE-2017-12615 -Tomcat-任意写入文件
漏洞分析参考 https://www.freebuf.com/vuls/148283.html 漏洞描述: 当 Tomcat运行在Windows操作系统时,且启用了HTTP PUT请求方法(例如,将 ...
- HTB系列之七:Bastard
出品|MS08067实验室(www.ms08067.com) 这次挑战的是 HTB 的第7台靶机:Bastard 技能收获: PHP Unserilaize CMS Version Identify ...
- salesforce lightning零基础学习(十七) 实现上传 Excel解析其内容
本篇参考: https://developer.mozilla.org/zh-CN/docs/Web/API/FileReader https://github.com/SheetJS/sheetjs ...



