Codeforces 1411G - No Game No Life(博弈论+生成函数+FWTxor)
一道肥肠套路的题目。
首先这题涉及博弈论。注意到这里每一个棋子的移动方式都是独立的,因此可以考虑 SG 定理。具体来说,我们先求出每个棋子放在每个位置的 SG 函数——这个是非常好求的,具体方法就是建反图拓扑排序,求集合的 MEX 时可以 map 存,也可以直接枚举,复杂度 \(m\sqrt{m}\) 或 \(m\sqrt{m}\log m\)(反正我使用的 map 没有 TLE 就是了)
于是问题转化为,有多大概率满足开始游戏时,所有棋子放置位置的 SG 值的异或和不为 \(0\)。注意到这里涉及异或和及无穷级数,因此考虑生成函数,我们考虑集合幂级数 \(A\),其中 \([x^n]A\) 表示一次随机放置的点的 SG 值等于 \(n\) 的概率,那么不难发现答案即为 \(1-\dfrac{1}{n+1}[x^0]\sum\limits_{k\ge 0}A^k\)。显然这东西可以化简为 \(1-\dfrac{1}{n+1}[x^0]\dfrac{1}{1-A}\),然后用 FWTxor 的套路随便搞一下即可。
时间复杂度 \(m\sqrt{m}\)(当然我的程序是 \(m\sqrt{m}\log m\),不过跑得飞快)
const int MAXN=1e5;
const int MAXP=1<<17;
const int MOD=998244353;
const int INV2=499122177;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,m,deg[MAXN+5],hd[MAXN+5],to[MAXN+5],nxt[MAXN+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
map<int,int> vis[MAXN+5];int sg[MAXN+5],a[MAXP+5];
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
a[j+k]=1ll*type*(X+Y)%MOD;
a[(i>>1)+j+k]=1ll*type*(X-Y+MOD)%MOD;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,u,v;i<=m;i++) scanf("%d%d",&u,&v),deg[u]++,adde(v,u);
queue<int> q;
for(int i=1;i<=n;i++) if(!deg[i]) q.push(i);
while(!q.empty()){
int x=q.front();q.pop();
while(vis[x][sg[x]]) ++sg[x];
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];vis[y][sg[x]]=1;
if(!--deg[y]) q.push(y);
}
} int ivn=qpow(n+1,MOD-2);
for(int i=1;i<=n;i++) a[sg[i]]++;
for(int i=0;i<n;i++) a[i]=1ll*a[i]*ivn%MOD;
FWTxor(a,MAXP,1);
for(int i=0;i<MAXP;i++) a[i]=qpow((1-a[i]+MOD)%MOD,MOD-2);
FWTxor(a,MAXP,INV2);
printf("%d\n",(1-1ll*a[0]*ivn%MOD+MOD)%MOD);
return 0;
}
Codeforces 1411G - No Game No Life(博弈论+生成函数+FWTxor)的更多相关文章
- Codeforces 438E The Child and Binary Tree - 生成函数 - 多项式
题目传送门 传送点I 传送点II 传送点III 题目大意 每个点的权值$c\in {c_{1}, c_{2}, \cdots, c_{n}}$,问对于每个$1\leqslant s\leqslant ...
- codeforces 1451D,一道有趣的博弈论问题
大家好,欢迎来到codeforces专题. 今天选择的问题是Contest 1451场的D题,这是一道有趣简单的伪博弈论问题,全场通过的人有3203人.难度不太高,依旧以思维为主,坑不多,非常友好. ...
- [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)
题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高. ( ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- BZOJ3625 [Codeforces Round #250]小朋友和二叉树(生成函数+多项式开根)
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以 ...
- 2019.01.26 codeforces 632E. Thief in a Shop(生成函数)
传送门 题意简述:给nnn个物件,物件iii有一个权值aia_iai,可以选任意多个.现在要求选出kkk个物件出来(允许重复)问最后得到的权值和的种类数. n,k,ai≤1000n,k,a_i\le ...
- CF55C. Pie or die
/* CF55C. Pie or die http://codeforces.com/problemset/problem/55/C 博弈论 乱搞 获胜条件是存在一个棋子到边界的值小于5 */ #in ...
- CF786A - Berzerk
/* CF786A - Berzerk http://codeforces.com/contest/786/problem/A 博弈论 直接搜出NP状态图.记得要记忆化剪枝. * */ #includ ...
- Codeforces 438E The Child and Binary Tree [DP,生成函数,NTT]
洛谷 Codeforces 思路 看到计数和\(998244353\),可以感觉到这是一个DP+生成函数+NTT的题. 设\(s_i\)表示\(i\)是否在集合中,\(A\)为\(s\)的生成函数,即 ...
随机推荐
- 保护模式篇——PAE分页
写在前面 此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...
- 初学Python-day7 案例(乘法口诀 已更新!!)
案例::(乘法口诀) 用for循环做乘法口诀: 1 # 第一种 2 for i in range(1, 10): 3 for j in range(1, i + 1): 4 print('{} * ...
- 上午小测1 T1 木板 题解
前言: WTCL,居然折磨煎蛋的性质都忘记了,WTCL. 考场上想出来了正解,就差一点就能A掉,挺难受的. 要记住一个数n可能会有一个大于\(\sqrt{n}\)的质因子..我忘记把它加进去了.... ...
- 洛谷 P5785 [SDOI2012] 任务安排
链接: P5785 弱化版:P2365 题意: 有 \(n\) 个任务待完成,每个任务有一个完成时间 \(t_i\) 和费用系数 \(f_i\),相邻的任务可以被分成一批.从零时刻开始这些任务会被机器 ...
- python pip whl安装和使用
转载:https://www.cnblogs.com/klb561/p/9271322.html 1 python的安装 首先,从python的官方网站 www.python.org下载需要的pyth ...
- Linux上Qt旋转显示
对于嵌入式设备来说用于显示的LCD总是千奇百怪,比如说明明是一个竖屏,但是客户却要当横屏使用,也就是意味着我们需要将整个屏幕上显示的内容旋转90度或者270度. 这个操作对于Android系统来说相当 ...
- 小米多模网关接入Home Assistant ZNDMWG03LM
一.小米zigbee网关使用 先下载米家app,打开手机蓝牙,登陆点"我的"界面,将网关设备插上电源,橙灯闪烁,点击蓝牙网关等待弹窗提示连接,选择连接路由器(需2.4GHz),输入 ...
- Part 21 to 22 AngularJS anchorscroll
Part 21 AngularJS anchorscroll example $anchorscroll service is used to jump to a specified element ...
- Asp.net core自定义依赖注入容器,替换自带容器
依赖注入 在asp.net core程序中,众所周知,依赖注入基本上贯穿了整个项目,以通用的结构来讲解,控制器层(Controller层)依赖业务层(Service层),业务层依赖于仓储层(Repos ...
- Java的初始化过程
在刷题的过程中,时常会碰到关于Java中的类的初始化顺序的问题. 总结如下,便于以后复习: 初始化过程: 首先,初始化父类中的静态成员变量和静态代码块,按照在程序中出现的顺序初始化: 然后,初始化子类 ...