题目传送门

典型的 Atcoder 风格的计数 dp。

题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序列。

显然相同的数可以合并,因为在由相同的数 \(x\) 组成的数段中,在任何位置插入 \(x\),得到的序列都是相同的。

再考虑字典序的问题。你只能序列末尾或者一个 \(<x\) 的数前面插入 \(x\),否则得到的序列的字典序就会 \(\geq\) 原序列的字典序。

但这样问题还是比较棘手,我们还需进一步转化。

我们把操作序列转化为一棵有根树,树上每个节点都是一个二元组 \((val,dfn)\),表示第 \(dfn\) 次操作插入了值为 \(val\) 的数。如果第 \(i\) 次操作将 \(v\) 插在第 \(j\) 次操作插入的数 \(w\) 前面,那么我们就将节点 \((v,i)\) 挂在 \((w,j)\) 下面。新建一个虚拟节点 \((0,0)\),如果在序列末尾插入 \(v\),那么就把 \((v,i)\) 挂在 \((0,0)\) 下面。

由于我们只能在 \(<x\) 的数前面插入 \(x\),因此若 \(y\) 为 \(x\) 的父亲,那么 \(val_y>val_x\),\(dfn_y<dfn_x\)

不妨举个例子,假设有如下的操作序列:

  1. 向序列中插入数 \(1\),得到序列 \([1]\)。这可看成将点 \((1,1)\) 挂在点 \((0,0)\) 下面。
  2. 在 \(1\) 前插入 \(3\),得到序列 \([3,1]\)。这可看成将点 \((3,2)\) 挂在点 \((1,1)\) 下面。
  3. 在序列末尾插入 \(2\),得到序列 \([3,1,2]\)。这可看成将点 \((2,3)\) 挂在点 \((0,0)\) 下面。
  4. 在 \(1\) 再插入一个 \(3\),得到序列 \([3,3,1,2]\)。这可看成将点 \((3,4)\) 挂在点 \((1,1)\) 下面。
  5. 在 \(1\) 前插入一个 \(2\),得到序列 \([3,3,2,1,2]\)。这可看成将点 \((2,5)\) 挂在点 \((1,1)\) 下面。
  6. 在第二个 \(3\) 前插入一个 \(4\),得到序列 \([3,4,3,2,1,2]\)。这可看成将点 \((4,6)\) 挂在点 \((3,4)\) 下面。

这样 \(6\) 次操作下来,我们得到了一棵 \(7\) 个节点的树,如下图:



一种操作序列恰对应一棵树,一棵满足条件的树也对应一种操作序列。因此问题转化为有多少个满足条件的树。

这就可以直接 \(dp\) 了。我们设 \(dp_{i,j}\) 表示有多少个以 \(i\) 为节点的树,根节点的 \(val\) 为 \(j\)。

考虑转移,对于 \(i>1\),假设根节点的 \(dfn\) 为 \(1\),那么根节点必定有个儿子,其 \(dfn\) 为 \(2\)。我们就枚举这棵子树的大小 \(l\) 和根节点的 \(val\) —— \(v\)。确定这棵子树的形态的方案数为 \(dp_{l,v}\),将这棵子树中所有节点的 \(dfn\) 值定好的方案数为 \(C_{n-2}^{k-1}\)(从 \(3\) 到 \(n\) 这 \(n-2\) 个数中中选择 \(k-1\) 个数),填好剩余部分的方案数为 \(dp_{i-l,j}\)。因此有转移方程:

\[dp_{i,j}=\sum\limits_{l-1}^{i-1}C_{n-2}^{k-1} \times dp_{i-l,j} \times \sum\limits_{v=j+1}^k dp_{l,v}
\]

后面那个 \(\sum\) 可以用前缀和优化掉。时间复杂度 \(\mathcal O(n^2k)\)

/*
Contest: -
Problem: Atcoder Grand Contest 024 E
Author: tzc_wk
Time: 2020.7.22
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
int n=read(),k=read(),m=read();
int C[305][305],s[305][305],dp[305][305];
signed main(){
fz(i,0,300){
C[i][0]=1;
fz(j,1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%m;
}
// printf("%d\n",C[5][3]);
fz(i,0,k) dp[1][i]=1;
fd(i,k,0) s[1][i]=(s[1][i+1]+dp[1][i])%m;
fz(i,2,n+1){
fz(j,0,k)
fz(l,1,i-1)
dp[i][j]=(dp[i][j]+C[i-2][l-1]*dp[i-l][j]%m*s[l][j+1]%m)%m;
fd(j,k,0) s[i][j]=(s[i][j+1]+dp[i][j])%m;
}
printf("%lld\n",dp[n+1][0]);
return 0;
}

Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)的更多相关文章

  1. AtCoder Grand Contest 019 B - Reverse and Compare【思维】

    AtCoder Grand Contest 019 B - Reverse and Compare 题意:给定字符串,可以选定任意i.j且i<=j(当然i==j时没啥卵用),然后翻转i到j的字符 ...

  2. [AtCoder Grand Contest 024 Problem E]Sequence Growing Hard

    题目大意:考虑 N +1 个数组 {A0,A1,…,AN}.其中 Ai 的长度是 i,Ai 内的所有数字都在 1 到 K 之间. Ai−1 是 Ai 的子序列,即 Ai 删一个数字可以得到 Ai−1. ...

  3. Atcoder Grand Contest 024

    A 略 B 略 C 略 D(构造分形) 题意: 给出一个由n个点的组成的树,你可以加一些点形成一个更大的树.对于新树中的两个点i和j,如果以i为根的树与以j为根的树是同构的那么i和j颜色可以相同.问最 ...

  4. Atcoder Grand Contest 005 E - Sugigma: The Showdown(思维题)

    洛谷题面传送门 & Atcoder 题面传送门 记先手移动棋子的树为红树,后手移动棋子的树为蓝树. 首先考虑一个性质,就是如果与当前红色棋子所在的点相连的边中存在一条边,满足这条边的两个端点在 ...

  5. Atcoder Grand Contest 022 E - Median Replace(dp)

    Atcoder 题面传送门 & 洛谷题面传送门 首先考虑对于固定的 01 串怎样计算它是否可以通过将三个连续的 \(0\) 或 \(1\) 替换为其中位数得到.我们考虑单调栈,新建一个栈,栈底 ...

  6. Atcoder Grand Contest 002 F - Leftmost Ball(dp)

    Atcoder 题面传送门 & 洛谷题面传送门 这道 Cu 的 AGC F 竟然被我自己想出来了!!!((( 首先考虑什么样的序列会被统计入答案.稍微手玩几组数据即可发现,一个颜色序列 \(c ...

  7. Atcoder Grand Contest 039C(容斥原理,计数DP)

    //每次操作相当于将最低位取反加到最高位(N~1位)#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace s ...

  8. Atcoder Grand Contest 037C(贪心,优先队列,思维)

    #define HAVE_STRUCT_TIMESPEC//编译器中time.h和phread.h头文件中timespec结构体重名,故加此行#include<bits/stdc++.h> ...

  9. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

随机推荐

  1. C语言中while 语句

    while的执行顺序 while 循环的执行顺序非常简单,它的格式是: while (表达式) { 语句: } 概念:当表达式为真,则执行下面的语句:语句执行完之后再判断表达式是否为真,如果为真,再次 ...

  2. 80. 删除有序数组中的重复项 II

    题目 给你一个有序数组 nums ,请你原地删除重复出现的元素(不需要考虑数组中超出新长度后面的元素),使每个元素最多出现两次 ,返回删除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入 ...

  3. python3.5 安装mysqlclient

    python 3.5 安装 mysqlclient 会失败 pip install mysqlclient 注意这里环境中只有python3.5 会出现一大堆红字 编译终止, error: comma ...

  4. 通用 Makefile(及makefile中的notdir,wildcard和patsubst)

    notdir,wildcard和patsubst是makefile中几个有用的函数,以前没留意过makefile中函数的用法,今天稍微看看~ 1.makefile里的函数 makefile里的函数使用 ...

  5. hdu 1856 More is better(并查集)

    题意: Mr Wang wants some boys to help him with a project. Because the project is rather complex, the m ...

  6. Linux 显示ip、dns、网关等命令

    在新版的ubuntu 终端里输入命令nm-tool, 想查看网络参数设置, 没想到却返回如下内容:   未找到 'nm-tool' 命令,您要输入的是否是:  命令 'dm-tool' 来自于包 'l ...

  7. linux 内核源代码情景分析——linux 内核源代码中的C语言代码

    linux 内核的主体是以GNU的C语言编写的,GNU为此提供了编译工具gcc.GNU对C语言本身作了不少扩充. 1) gcc 从 C++ 语言中吸收了"inline"和" ...

  8. MySQL报错汇总[10/29更新]

  9. Win powershell执行策略配置

    参考连接:https://blog.csdn.net/jeffxu_lib/article/details/84710386 参考连接:http://www.cragsman.org/index.ph ...

  10. iostat主要性能指标

    iostat参数很多,日常运维中主要关注一下字段(根据这些字段的输出内容一般就可以确定服务器是否存在IO性能瓶颈) 1.%iowait:CPU等待输入输出完成时间的百分比.该值较高,表示磁盘存在I/O ...