DTOJ 3987: 数学课
题目描述
wzy又来上数学课了…… 虽然他很菜,但是数学还是懂一丢丢的。老师出了一道题,给定一个包含$n$个元素的集合$P=1,2,3……n$求有多少集合$A \subseteq P$,满足$x \in A$且$2x \notin A$且对于$A$在$P$中的补集也要满足相同条件。给定$m$求大小为$m$的$A$有多少个,输出答案$mod~10000019$。
输入
第一行$n,q$,接下来$q$行,每行一个$m$。
输出
对于每个$m$输出答案$mod~10000019$
【样例输入】
3 3
0
1
2
【样例输出】
0
2
2
【数据范围】
$n,m<=10^{18}~q<=100000$
分析:
又是计数类问题,应该有DP写法。$n,m$很大,但模数比较小,又可以考虑卢卡斯。
恩,思路比较多。可以先考虑观察找找性质。
$x$和$2x$不能再同一个集合,我们将将$x$和$2x$连一条边,那么$n$个数,就被划分成了若干条链,然后对于每一条链,发现只有两种选法(间隔一个选一个),而且每条链都必须选其中一种。那么总共有多少种选法就很显然了。
考虑题目中要求的集合大小为$m$。不难发现存在无解(即答案为0)。我们假设一条链的链长为$2p$或$2p+1$,那么由于每条链都必须选其中的一半,偶数链选出的个数一定为$p$,但奇数链可以选出$p$或$p+1$。所以可以计算出最少要取几个(下界)和最多可以取几个(上界),显然,不在这范围内的$m$就无解了。那么考虑有解情况,偶数链都选$p$不会改变选出数的个数,只有奇数链可以取$p$或$p+1$可以影响选出数的个数。我们用$m$减去下界,然后剩下的数就需要用奇数链中$p+1$多出来的$1$补齐,那么就考虑是那几条奇数链补上的一即可。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define ll long long
#define p 10000019
using namespace std;
int q,logn;
ll n,m,f[p+5],inv[p+5],l,r,las,mi[70],odd,eve;
inline ll power(ll a,ll x){
ll res=1;
for(;x;a=a*a%p,x>>=1) if(x&1) res=res*a%p;
return res;
}
inline ll C(ll a,ll b){
return a<b?0:f[a]*inv[f[b]]%p*inv[f[a-b]]%p;
}
inline ll lucas(ll a,ll b){
if(a<p&&b<p) return C(a,b);
return C(a%p,b%p)*lucas(a/p,b/p)%p;
}
int main(){
scanf("%lld%d",&n,&q);
inv[1]=f[0]=1;
for(int i=1;i<p;i++) f[i]=f[i-1]*i%p;
for(int i=2;i<p;i++) inv[i]=inv[p%i]*(p-p/i)%p;
for(ll i=n;i;i>>=1) logn++;
mi[0]=1;for(int i=1;i<=logn;i++) mi[i]=mi[i-1]*2;
for(int j=logn;j;j--){
ll now=n/mi[j-1];
ll num=(now+1)/2-las;
las=(now+1)/2;
l+=j/2*num;r+=(j+1)/2*num;
j&1?odd+=num:eve+=num;
}
for(int i=1;i<=q;i++){
scanf("%lld",&m);
if(m<l||m>r){puts("0");continue;}
else printf("%lld\n",lucas(odd,m-l)*power(2,eve)%p);
}
return 0;
}
总结:
计数类问题真的很多都是排列组合和DP。这道题也有DP推导的方法。
DTOJ 3987: 数学课的更多相关文章
- hdu 3987 Harry Potter and the Forbidden Forest 求割边最少的最小割
view code//hdu 3987 #include <iostream> #include <cstdio> #include <algorithm> #in ...
- ZOJ 3987 Numbers(Java枚举)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3987 题意:给出一个数n,现在要将它分为m个数,这m个数相加起来必须等于n ...
- 洛谷P2826 LJJ的数学课
题目背景 题目描述(本题是提高组第二题难度+) 题目描述 \(LJJ\)又要开始上数学课啦!(\(T1\),永恒不变的数学) \(LJJ\)的\(Teacher\)对上次的考试很不满意(其实是出题人对 ...
- HDU 3987 Harry Potter and the Forbidden Forest(边权放大法+最小割)
Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65536/ ...
- 数学课(math)
数学课(math) 题目描述 wzy又来上数学课了-- 虽然他很菜,但是数学还是懂一丢丢的.老师出了一道题,给定一个包含nn个元素的集合P=1,2,3,-,nP=1,2,3,-,n,求有多少个集合A⊆ ...
- 【hdu 3987】Harry Potter and the Forbidden Forest
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=3987 [Description] 给出一张有n个点的图,有的边又向,有的边无向,现在要你破坏一些路 ...
- 【DTOJ】2704:数字互换
DTOJ 2704:数字互换 解题报告 2017.11.11 第一版 ——由翱翔的逗比w原创 题目信息: 题目描述 输入两个数作为交换数,输出已交换顺序后的两个值. 输入 两个整数,空格隔开 输出 ...
- 【DTOJ】2703:两个数的余数和商
DTOJ 2703:两个数的余数和商 解题报告 2017.11.10 第一版 ——由翱翔的逗比w原创,引用<C++ Primer Plus(第6版)中文版> 题目信息: 题目描述 给你a ...
- 【DTOJ】1001:长方形周长和面积
DTOJ 1001:长方形周长和面积 解题报告 2017.11.05 第一版 ——由翱翔的逗比w原创 题目信息: 题目描述 已知长方形的长和宽,求长方形的周长和面积? 输入 一行:空格隔开的两个整 ...
随机推荐
- Java Filter型内存马的学习与实践
完全参考:https://www.cnblogs.com/nice0e3/p/14622879.html 这篇笔记,来源逗神的指点,让我去了解了内存马,这篇笔记记录的是filter类型的内存马 内存马 ...
- MarkDown之Typora使用
Typora:所见即所得 常用快捷键 加粗:ctrl + B 标题:ctrl + 16,对于与16级标题 插入公式:ctrl + Shift + m 插入代码:ctrl + Shift + K 插入图 ...
- 有向路径检查 牛客网 程序员面试金典 C++ Python
有向路径检查 牛客网 程序员面试金典 C++ Python 题目描述 对于一个有向图,请实现一个算法,找出两点之间是否存在一条路径. 给定图中的两个结点的指针DirectedGraphNode* a, ...
- Kafka 消费迟滞监控工具 Burrow
Kafka 官方对于自身的 LAG 监控并没有太好的方法,虽然Kafka broker 自带有 kafka-topic.sh, kafka-consumer-groups.sh, kafka-cons ...
- Java实体映射工具MapStruct使用详解
1.序 通常在后端开发中经常不直接返回实体Entity类,经过处理转换返回前端,前端提交过来的对象也需要经过转换Entity实体才做存储:通常使用的BeanUtils.copyProperties方法 ...
- 有关unsigned和有符号类型的区别
相信大家对于unsigned这个玩意并不陌生,但是有的时候却会被它搞懵,比如下面: #include<iostream> using std::cout; using std::cin; ...
- 有关于ONVIF
1.什么是ONVIF2008年5月,由安讯士(AXIS)联合博世(BOSCH)及索尼(SONY)公司三方宣布携手共同成立一个国际开放型网络视频产品标准网络接口开发论坛,取名为ONVIF(Open Ne ...
- loadrunner奇怪问题解决:TPS中有Action_Transaction 和 vuser_init_Transaction
TPS图里多出两条曲线:Action_Transaction 和 vuser_init_Transaction 如下图: 解决方法: Runtime-Settings-Miscellaneous--A ...
- LoadRunner12浏览器录制(谷歌火狐)
一.使用谷歌浏览器 下载的版本 65.0.3325.162(正式版本)(64 位)安装之前要记得把电脑现有的谷歌浏览器卸载了. 1.下载地址:https://www.chromedownloads.n ...
- 使用XAMPP创建Mysql数据库 要想在本地连接需要配置一下my.ini文件 配置如下:
# Example MySQL config file for small systems. # # This is for a system with little memory (<= 64 ...