Atcoder 题面传送门

笑死,阴间语文作业到现在还没写完,为了在这个点保持精神,我只好来颓篇题解辣

我们考虑探究一下怎么最小化 \(\max\limits_{i=1}^nE_i\),我们假设 \(E_{p_1}<E_{p_2}<E_{p_3}<\cdots<E_{p_n}\),那么对于 \(i\in[1,n-1]\),根据题目条件显然有 \(\text{dist}(p_i,p_{i+1})\le E_{p_{i+1}}-E_{p_i}\),累加起来则有 \(\sum\limits_{i=1}^{n-1}\text{dist}(p_i,p_{i+1})\le \sum\limits_{i=1}^{n-1}E_{p_{i+1}}-E_{p_i}=E_{p_n}-E_{p_1}\),\(E_{p_n}\) 显然就是我们要求的最大值,而 \(E_{p_1}\) 我们肯定希望它越小越好,显然我们会令 \(E_{p_1}\),也就是说最小化 \(\max\limits_{i=1}^nE_i\) 就等价于最小化 \(\sum\limits_{i=1}^{n-1}\text{dist}(p_i,p_{i+1})\),也就是最短的这是一个非常经典的问题,注意到对于一棵树而言,如果我们要求一个以 \(s\) 开头 \(s\) 为根的回路,使其长度最小,那显然一边欧拉序即可,答案即为 \(2(n-1)\),那如果不强制起点和终点相同呢?不难发现这两种情况只差一条终点 \(\to\) 起点的路径,也就是说我们要让终点 \(\to\) 起点的长度尽可能大,那显然树的直径好了,也就是说答案就是 \(2(n-1)+1\) 减树的直径的长度,这个随便乱搞即可。构造就取每个点的 \(E_i\) 为以直径的某一端点为根的 DFS 序下 \(i\) 的入栈时间,正确性证明可借鉴树上莫队,复杂度线性。

const int MAXN=2e5;
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dep1[MAXN+5],dep2[MAXN+5],rt1,rt2;
void dfs1(int x,int f){
dep1[x]=dep1[f]+1;
for(int e=hd[x];e;e=nxt[e]) if(to[e]^f) dfs1(to[e],x);
}
void dfs2(int x,int f){
dep2[x]=dep2[f]+1;
for(int e=hd[x];e;e=nxt[e]) if(to[e]^f) dfs2(to[e],x);
}
bool has[MAXN+5];int son[MAXN+5];
void dfs3(int x,int f){
has[x]=(x==rt2);
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
dfs3(y,x);if(has[y]) has[x]=1,son[x]=y;
}
}
int ans[MAXN+5],tim=0;
void dfs4(int x,int f){
ans[x]=++tim;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||y==son[x]) continue;
dfs4(y,x);tim++;
} if(son[x]) dfs4(son[x],x),tim++;
}
int main(){
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
dfs1(1,0);for(int i=1;i<=n;i++) if(dep1[i]>dep1[rt1]) rt1=i;
dfs2(rt1,0);for(int i=1;i<=n;i++) if(dep2[i]>dep2[rt2]) rt2=i;
dfs3(rt1,0);dfs4(rt1,0);for(int i=1;i<=n;i++) printf("%d%c",ans[i],(i==n)?'\n':' ');
return 0;
}

Atcoder Regular Contest 117 D - Miracle Tree(分析性质+构造)的更多相关文章

  1. AtCoder Regular Contest 083 E - Bichrome Tree

    题目传送门:https://arc083.contest.atcoder.jp/tasks/arc083_c 题目大意: 给定一棵树,你可以给这些点任意黑白染色,并且赋上权值,现给定一个序列\(X_i ...

  2. AtCoder Regular Contest 103 Problem D Robot Arms (构造)

    题目链接  Problem D 给定$n$个坐标,然后让你构造一个长度为$m$的序列, 然后给每个坐标规定一个长度为$m$的序列,ULRD中的一个,意思是走的方向, 每次从原点出发按照这个序列方向,每 ...

  3. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  4. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

  5. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  6. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  7. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  8. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  9. AtCoder Regular Contest 097

    AtCoder Regular Contest 097 C - K-th Substring 题意: 求一个长度小于等于5000的字符串的第K小子串,相同子串算一个. K<=5. 分析: 一眼看 ...

随机推荐

  1. 初学python-day5 集合

  2. 如何获取ISO8601定义的Work Week

    工作中遇到一个需求,需要在打印标签的时候打印生产当天的工作周.工作周按照ISO-8601定义的标准计算.找到两种方案. Excel函数 C#代码 Excel函数 非常简单,调用一个Excel自带函数就 ...

  3. [Beta]the Agiles Scrum Meeting 9

    会议时间:2020.5.24 21:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 issue yjy 撰写技术博客 tq 实现评测机获取评测状态功能 评测部分增加更多评测指标 wjx ...

  4. CentOS8 部署 MySQL8

    前言 有来项目的数据库在此之前使用的是 Docker 部署的,具体可见文章 Docker 安装 MySQL8 ,服务器是阿里云 2C2G 的ECS轻量服务器,可能是配置问题有时不论查什么都要等很长很长 ...

  5. cf 24 Game (观察+.. 想一想)

    题意: 给一个数N,从1到N. 每次取两个数,三种操作:加.减.乘,运算完得一个数,把那俩数删了,把这个数加进去. 重复操作N-1次. 问是否可能得到24.若可以,输出每一步操作. 思路: 小于4,不 ...

  6. Obsidian中使用Calendar插件快捷建立日记、周记

    Calendar插件 Calendar插件是我第一个安装使用的插件,插件可以帮助我们很便捷的记录每天的工作 插件效果图 插件下载 下载地址 插件安装 # Obsidian如何手动下载并安装插件-以看板 ...

  7. 近期业务大量突增微服务性能优化总结-4.增加对于同步微服务的 HTTP 请求等待队列的监控

    最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...

  8. java随手记 面向对象

    // 可以把两个类放在同一个文件中,但文件中只能有一个类是公共类,且公共类必须与文件同名,即xxx.java,源代码中的每个类编译成class文件 // java库中的类 // java.util.* ...

  9. sudo 命令详解

    在linux系统中,由于root的权限过大,一般情况都不使用它.只有在一些特殊情况下才采用登录root执行管理任务,一般情况下临时使用root权限多采用su和sudo命令. 一.su和sudo命令对比 ...

  10. JetBrains IntelliJ IDEA汉化

    JetBrains IntelliJ IDEA汉化 开启 IntelliJ IDEA,点击右下角Configure菜单,选择 Plugins.在弹出的 Plugins窗口里,切换至 Marketpla ...