P1024 [NOIP2001 提高组] 一元三次方程求解
题目描述
有形如:a x^3 + b x^2 + c x + d = 0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在 -100至 100之间),且根与根之差的绝对值 ≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2位。
提示:记方程 f(x) = 0,若存在 2 个数 x1 和 x2,且 x1<x2,f(x1)×f(x2)<0,则在 (x1,x2) 之间一定有一个根。
输入格式
一行,4 个实数 a,b,c,d。
输出格式
一行,3 个实根,从小到大输出,并精确到小数点后 2 位。
输入输出样例
输入
1 -5 -4 20
输出
-2.00 2.00 5.00
分析
二分或牛顿迭代之
代码
#include <bits/stdc++.h> #define Enter puts("")
#define Space putchar(' ') using namespace std; typedef long long ll;
typedef unsigned long long Ull;
typedef double Db; inline ll Read()
{
ll Ans = 0;
char Ch = ' ' , Las;
while(!isdigit(Ch))
{
Las = Ch;
Ch = getchar();
}
while(isdigit(Ch))
{
Ans = (Ans << 3) + (Ans << 1) + Ch - '0';
Ch = getchar();
}
if(Las == '-')
Ans = -Ans;
return Ans;
} inline void Write(ll x)
{
if(x < 0)
{
x = -x;
putchar('-');
}
if(x >= 10)
Write(x / 10);
putchar(x % 10 + '0');
} inline ll Quick_Power(ll a , ll b)
{
ll Ans = 1 , Base = a;
while(b != 0)
{
if(b & 1 != 0)
Ans *= Base;
Base *= Base;
b >>= 1;
}
return Ans;
} Db x1 , x2 , x3 , a , b , c , d;
inline Db f(Db x)
{
return a * x * x * x + b * x * x + c * x + d;
}
inline Db df(Db x)
{
return 3 * a * x * x + 2 * b * x + c;
}
inline Db slove(Db l,Db r)
{
Db x , x0 = (l + r) / 2;
while(abs(x0 - x) > 0.0001)
x = x0 - f(x0) / df(x0) , swap(x0 , x);
return x;
}
int main()
{
cin >> a >> b >> c >> d;
Db p = (-b - sqrt(b * b - 3 * a * c)) / (3 * a);
Db q = (-b + sqrt(b * b - 3 * a * c)) / (3 * a);
x1 = slove(-100 , p);
x2 = slove(p , q);
x3 = slove(q , 100);
printf("%.2lf %.2lf %.2lf" , x1 , x2 , x3);
return 0;
}
P1024 [NOIP2001 提高组] 一元三次方程求解的更多相关文章
- [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)
[NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...
- 洛谷——P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- P1024 一元三次方程求解
P1024 一元三次方程求解 #include<cstdio> #include<iostream> #include<algorithm> using names ...
- 洛谷P1024 一元三次方程求解
P1024 一元三次方程求解 题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-10 ...
- NOIP2001 一元三次方程求解
题一 一元三次方程求解(20分) 问题描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范 ...
- Codevs 1038 一元三次方程求解 NOIP 2001(导数 牛顿迭代)
1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 有形如:ax3+b ...
- Vijos P1116 一元三次方程求解【多解,暴力,二分】
一元三次方程求解 描述 有形如:ax^3+bx^2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之 ...
- 洛谷 P1025 & [NOIP2001提高组] 数的划分(搜索剪枝)
题目链接 https://www.luogu.org/problemnew/show/P1025 解题思路 一道简单的dfs题,但是需要剪枝,否则会TLE. 我们用dfs(a,u,num)来表示上一个 ...
- [NOIP2001] 提高组 洛谷P1024 一元三次方程求解
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...
随机推荐
- JavaScript 的入门学习案例,保证学会!
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- java8中的日期和时间API
一.背景 jdk 1.8 之前, Java 时间使用java.util.Date 和 java.util.Calendar 类. Date today = new Date(); System.out ...
- vscode 终端操作命令npm报错
错误: 如果没有安装的node.js ,则需要安装. node.js官网下载地址: https://nodejs.org/zh-cn/ 安装node.js 后会看到C:\Users\XXX\AppDa ...
- 8张图带你了解iptables的前世今生
1 安全技术和防火墙 1 安全技术和防火墙 入侵检测系统(Intrusion Detection Systems):特点是不阻断任何网络访问,量化.定位来自内 外网络的威胁情况,主要以提供报警和事后监 ...
- 21.File和IO流
IO就可以对文件进行读写 File表示要读写的文件在哪,也可以对文件进行创建,删除等操作 小结: IO流是什么? 1.可以将数据从本地文件中读取出来 2.可以将数据从内存保存到本地文件 File类时什 ...
- spring-第三章-jdbc
一,回顾 aop:面向切面编程,就是将一些和主业务流程没有关系的公共代码,提取封装到切面类,通过切入点规则,可以对目标方法进行功能增强;也就是可以再目标方法执行的前后添加一段额外逻辑代码; 二,Jdb ...
- xxl-job源码阅读二(服务端)
1.源码入口 xxl-job-admin是一个简单的springboot工程,简单翻看源码,可以很快发现XxlJobAdminConfig入口. @Override public void after ...
- jQurey判断下一项是否为指定项、下一项是否有指定项
jQurey判断下一项是否为指定项.下一项是否有指定项 此例子中,如果某个列表项没有二级列表,那么去掉它的展开.收起按钮.就是前边那个减号. 此时我们需要判断VOC综合治理技术这一项是否含有二级菜单, ...
- JavaScript中的运算符和语句
一.JavaScript的运算符 a.基本的算术运算符(+.-.*./.%) -.*./.%运算符会在必要的时候将操作数转换为数字,无法转换成数字的操作数将会转换成NaN,相应的运算结果也是NaN. ...
- [bug] NameNode无法启动 invalid-uri-for-namenode-address
配置文件core-site.xml中设置有误 <property> <name>fs.defaultFS</name>(NameNode地址) <value& ...