在图像分割中,使用 kmeans 算法可以实现图像区域基本分割。如果一幅图像被分为两类,kmeans 分割效果与  ostu 算法基本一致,具体如下图:

  

kmeans 将图像灰度聚类为 k 类,ostu 将图像灰度分割为 2 类,当 k = 2 时,两种算法最终目的基本趋于一致。

kmeans 算法基本思路如下:

1)随机选取第一个聚类中心点,之后的聚类中心点选取有两种方法;

a. 随机选取其他 k - 1 个聚类中心点;

b. 根据已经选取的聚类中心点,计算所有点到已经选取的聚类中心点的距离,选择到所有已经选取的聚类中心点的最远点作为下一个聚类中心点;

2)根据点到已经选取的聚类中心点的距离对其进行分类;

3)重新求各个分类的聚类中心点,然后回到 2);

4)当不再满足迭代条件时给出最终聚类结果,迭代条件包括:

a. 聚类中心点在迭代过程中的偏移量;

b. 迭代次数;

对于聚类中心点的选择,一般情况下,方法 b 会得到更好的聚类,且迭代速度较快。

opencv 提供的 kmean 函数为:

double kmeans( InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts,

int flags, OutputArray centers=noArray() );

参数如下:

data: 待分类点矩阵,其类型必须为 CV_32F;

K,bestLabels: 聚类数与待分类点所属分类;

criteria:停止条件;

attempts:使用不同的随机聚类中心点尝试聚类次数;

flags:聚类中心点选择方案,包括完全随机选择,kmeans++选择方案(b),用户输入;

centers:最终聚类中心点;

以下给出 kmeans 算法使用代码:

 1 void UseKmeans(cv::Mat& src, cv::Mat& rst)
2 {
3 int width = src.cols;
4 int height = src.rows;
5 int dims = src.channels();
6 int sampleCount = width * height;
7
8 int clusterCount = 2;
9 Mat points(sampleCount, dims, CV_32F, Scalar(10));
10 cv::Mat pos(sampleCount, 2, CV_16S, Scalar(0, 0));
11 Mat labels;
12 Mat centers(clusterCount, 1, points.type());
13
14 // invert to data points
15 int index = 0;
16 for (int row = 0; row < height; row++) {
17 for (int col = 0; col < width; col++) {
18 points.at<float>(index, 0) = static_cast<int>(src.ptr<uchar>(row)[col]);
19 pos.at<short>(index, 0) = static_cast<short>(row);
20 pos.at<short>(index, 1) = static_cast<int>(col);
21 ++index;
22 }
23 }
24
25 // k-mean algorithm
26 TermCriteria criteria = TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, 1.0);
27 kmeans(points, clusterCount, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
28
29 int bright_val = -1;
30 for (int i = 0; i < centers.rows; ++i)
31 {
32 int val = centers.at<float>(i, 0);
33 if (val > bright_val)
34 bright_val = val;
35 }
36
37 int bright_label = -1;
38 for (int idx = 0; idx < sampleCount; ++idx)
39 {
40 float *datapoint = points.ptr<float>(idx);
41 int *datalabel = labels.ptr<int>(idx);
42 if (datapoint[0] >= bright_val)
43 {
44 bright_label = datalabel[0];
45 break;
46 }
47 }
48
49 // save result
50 rst.create(src.size(), CV_8UC1);
51 rst.rowRange(0, rst.rows) = 0;
52 for (int idx = 0; idx < sampleCount; ++idx)
53 {
54 int *datalabel = labels.ptr<int>(idx);
55 if (datalabel[0] == bright_label)
56 {
57 int row = pos.at<short>(idx, 0);
58 int col = pos.at<short>(idx, 1);
59 rst.ptr<uchar>(row)[col] = 255;
60 }
61 }
62 }

opencv笔记--Kmeans的更多相关文章

  1. OpenCV笔记大集锦(转载)

    整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址: ...

  2. opencv笔记6:角点检测

    time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇 ...

  3. opencv笔记5:频域和空域的一点理解

    time:2015年10月06日 星期二 12时14分51秒 # opencv笔记5:频域和空域的一点理解 空间域和频率域 傅立叶变换是f(t)乘以正弦项的展开,正弦项的频率由u(其实是miu)的值决 ...

  4. opencv笔记4:模板运算和常见滤波操作

    time:2015年10月04日 星期日 00时00分27秒 # opencv笔记4:模板运算和常见滤波操作 这一篇主要是学习模板运算,了解各种模板运算的运算过程和分类,理论方面主要参考<图像工 ...

  5. opencv笔记3:trackbar简单使用

    time:2015年 10月 03日 星期六 13:54:17 CST # opencv笔记3:trackbar简单使用 当需要测试某变量的一系列取值取值会产生什么结果时,适合用trackbar.看起 ...

  6. opencv笔记2:图像ROI

    time:2015年 10月 03日 星期六 12:03:45 CST # opencv笔记2:图像ROI ROI ROI意思是Region Of Interests,感兴趣区域,是一个图中的一个子区 ...

  7. opencv笔记1:opencv的基本模块,以及环境搭建

    opencv笔记1:opencv的基本模块,以及环境搭建 安装系统 使用fedora22-workstation-x86_64 安装opencv sudo dnf install opencv-dev ...

  8. OpenCV: Kmeans的使用一维和二维点集

    OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果. float CBlotGlint:: ...

  9. OpenCV基本架构[OpenCV 笔记0]

    最近正在系统学习OpenCV,将不定期发布笔记,主要按照毛星云的<OpenCV3编程入门>的顺序学习,会参考官方教程和文档.学习工具是Xcode+CMake,会对书中一部分内容更正,并加入 ...

随机推荐

  1. java调用redis的多种方式与心得

    心得: /** * 心得: * 1.连接方式主要有:直连同步,直连事务,直连管道,直连管道事务,分布式直连同步,分布式直连管道, * 分布式连接池同步,分布式连接池管道:普通连接池同步,普通连接池管道 ...

  2. 解决ubuntu 18.04(桌面版)搜狗输入法不能正常使用的问题

    ubuntu下搜狗输入法的配置文件在~/.config目录下,一般有三个目录SogouPY.SogouPY.users.sogou-qimpanel 执行命令 $ cd ~/.config $ rm ...

  3. doT.js模板用法

    前提:引入doT.min.js: <script type="text/javascript" src="js/jquery.js"></sc ...

  4. SYCOJ246螺旋矩阵

    题目-螺旋矩阵 (shiyancang.cn) noip201403螺旋矩阵[普及组]数学算法 - 大本营 - 博客园 (cnblogs.com) 以下为搬运代码.一个为算圈数,另外一个是数学方法 思 ...

  5. JAVA-JDK1.7-ConCurrentHashMap-源码并且debug说明

    概述 在一个程序员的成长过程就一定要阅读源码,并且了解其中的原理,只有这样才可以深入了解其中的功能,就像ConCurrentHashMap 是线程安全的,到底是如何安全的?以及如何正确使用它?reha ...

  6. Redis内存分析工具之redis-rdb-tools的安装与使用

    操作系统:Centos7    1.redis-rdb-tools工具是用python语言编写的,所以首先需要安装python: 安装: (1)用 wget 下载 python 2.7 并解压( 如果 ...

  7. Rust学习(一)

    为什么学习Rust 最近在看Linux相关新闻的时候,看到了Linux内核正在将Rust集成至内核内的消息,且越来越多的嵌入式开发可以使用Rust编程.以往笔者的技术栈只有 C语言 ,C++也只是浅尝 ...

  8. [Jetson Nano]Jetson Nano快速入门

    NVIDIAJetsonNano开发套件是适用于制造商,学习者和开发人员的小型AI计算机.相比Jetson其他系列的开发板,官方报价只要99美金,可谓是相当有性价比.本文如何是一个快速入门的教程,主要 ...

  9. jsp标签问题

    在jsp页面使用标签过程中有时候不注意规则的话,eclipse会提示一些错误,下面针对这些错误提出相应的解决办法:<form></form>标签1. Invalid locat ...

  10. elasticsearch源码分析及插件开发

    ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...