Solution -「CF 232E」Quick Tortoise
\(\mathcal{Description}\)
Link.
在一张 \(n\times m\) 的网格图中有空格 . 和障碍格 #,\(q\) 次询问,每次查询从 \((x_1,y_1)\) 出发,是否能仅向下或向右走,在不经过障碍格的情况下走到 \((x_2,y_2)\)。
\(n,m\le500\),\(q\le6\times10^5\)。
\(\mathcal{Solution}\)
Trick 向的分治解法。
不妨按行分治,设当前分治区间为 \([l,r]\),取中点 \(p\),则本层分治求解满足 \(l\le x_1\le p<x_2\le r\) 的所有询问(对于 \(x_1=x_2\) 的,特判即可)。记 \(f(i,j)\) 表示从 \((i,j)\) 出发,仅向下或向右走能到达的所有 \((p,k)\) 中 \(k\) 的集合(\(l\le i\le p\));对应地记 \(g(i,j)\) 表示从 \((i,j)\) 出发,仅向上或向左走能到达的所有 \((p,k)\) 中 \(k\) 的集合(\(p<i\le r\))。用 std::bitset 维护转移就能快速求解。
复杂度 \(\mathcal O\left(\left(\frac{nm^2}{\omega}+q\right)\log n\right)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <bitset>
#include <cstdio>
#include <vector>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
#define x1 my_x1
#define x2 my_x2
#define y1 my_y1
#define y2 my_y2
inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
const int MAXN = 500, MAXQ = 6e5;
int n, m, q;
bool ans[MAXQ + 5];
char grid[MAXN + 5][MAXN + 5];
std::bitset<MAXN + 5> f[MAXN + 5][MAXN + 5];
struct Query { int x1, y1, x2, y2, id; };
std::vector<Query> allq;
inline void solve( const int l, const int r, const std::vector<Query>& qry ) {
if ( qry.empty() ) return ;
int mid = l + r >> 1;
per ( i, m, 1 ) {
if ( grid[mid][i] == '.' ) ( f[mid][i] = f[mid][i + 1] ).set( i );
else f[mid][i].reset();
}
rep ( i, 1, m ) { // save data in f[0] temporarily.
if ( grid[mid][i] == '.' ) ( f[0][i] = f[0][i - 1] ).set( i );
else f[0][i].reset();
}
per ( i, mid - 1, l ) {
per ( j, m, 1 ) {
if ( grid[i][j] == '.' ) f[i][j] = f[i + 1][j] | f[i][j + 1];
else f[i][j].reset();
}
}
rep ( i, mid + 1, r ) {
rep ( j, 1, m ) {
if ( grid[i][j] == '.' ) {
f[i][j] = f[i == mid + 1 ? 0 : i - 1][j] | f[i][j - 1];
} else f[i][j].reset();
}
}
if ( l == r ) {
for ( auto q: qry ) ans[q.id] = f[l][q.y1].test( q.y2 );
return ;
}
std::vector<Query> lefq, rigq;
for ( auto q: qry ) {
if ( q.x2 <= mid ) lefq.push_back( q );
else if ( mid < q.x1 ) rigq.push_back( q );
else ans[q.id] = ( f[q.x1][q.y1] & f[q.x2][q.y2] ).any();
}
solve( l, mid, lefq ), solve( mid + 1, r, rigq );
}
int main() {
n = rint(), m = rint();
rep ( i, 1, n ) scanf( "%s", grid[i] + 1 );
allq.resize( q = rint() );
rep ( i, 0, q - 1 ) {
allq[i].x1 = rint(), allq[i].y1 = rint();
allq[i].x2 = rint(), allq[i].y2 = rint();
allq[i].id = i + 1;
}
solve( 1, n, allq );
rep ( i, 1, q ) puts( ans[i] ? "Yes" : "No" );
return 0;
}
Solution -「CF 232E」Quick Tortoise的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- Clickhouse的MergeTree表引擎存储结构
MergeTree存储的文件结构 一张数据表被分成几个data part,每个data part对应文件系统中的一个目录.通过以下SQL可以查询data parts的信息. select table, ...
- 使用Swing的GUI编程
Swing AWT概述 AWT:抽象窗口工具包,提供了一套与本地图形界面进行交互的接口,是Java提供的用来建立和设置Java的图形用户界面的基本工具 Swing以AWT为基础的,尽管Swing消除了 ...
- 转雅虎web前端网站优化 34条军规
雅虎给出了优化网站加载速度的34条法则(包括Yslow规则22条) 详细说明,下载转发 ponytail 的译文 1.Minimize HTTP Requests 减少HTTP请求 图片.css.sc ...
- Ubuntu16安装Nvidia驱动(GTX1060显卡)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- linux服务器之间传输文件的四种方式
linux文件传输在内网渗透中至关重要,所以我在此总结一下几种Linux服务器之间传输文件的四种方式 1. scp [优点]简单方便,安全可靠:支持限速参数[缺点]不支持排除目录[用法]scp就是se ...
- 动态多条件mysql模糊查询
sql拼接函数 public static String Instructor_sql_whole_study(String[] val_ids,String[] val_values) { Stri ...
- unity3d,java,c#,python,rospy的socket通信测试
1.C#在与其他人通信时,最好不要用tcpclient来承接其他语言,会收不到用户名,最好都用socket. 2.unity3d在与java通信时,对方返回我unity3d发的数据流会打印收到一个类, ...
- 计算机视觉3-> yolov5目标检测1 |从入门到出土
本来就想着是对自己第一次跑yolov5的coco128的一个记录,没想到现在准备总结一下的时候,一方面是继续学习了一些,另一方面是学长的一些任务的要求,挖出了更多的东西,所以把名字改为了"从 ...
- 字符串自实现(一)(mystrcpy,mystrcat,mystrcmp)
char* mystrcpy(char* str_one,const char* str_two) { char* tmp = str_one; while (*str_one++ = *str_tw ...
- go生成随机数字验证码
一行代码搞定 code := fmt.Sprintf("%06v", rand.New(rand.NewSource(time.Now().UnixNano())).Int31n( ...