\(\mathcal{Description}\)

  Link.

  给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数。

  \(n\le10^5\),\(a_i\le10^{10}\)。

\(\mathcal{Solution}\)

  特判完全立方数——至多选一个。然后按一贯的套路约去立方因子。不过由于值域比较大,我们可以只筛出 \(\max\{a_i\}^{\frac{1}3}\) 的素数,计算这些素数在 \(a_i\) 的标准分解中的指数,借此求出 \(a_i\) 和能与 \(a_i\) 配成完全立方数的指数。而对于未被这些素数筛掉的部分,暴力判断是否是平方数就能计算出配对的数了。显然配对是相互的,所以用 std::map 做桶,在能配对的两个数中贪心地选取出现次数更多的数即可。

  复杂度 \(\mathcal O(n(\pi(\max\{a_i\}^{\frac{1}3})+\log n))\)。

\(\mathcal{Code}\)

#include <map>
#include <cmath>
#include <cstdio>
#include <iostream> typedef long long LL;
#define int LL const int MAXN = 1e5, MAXFAC = 2155;
const LL MAXV = 1e10;
int n, pn, pr[MAXFAC + 5], siz[MAXN + 5], rev[MAXN + 5];
LL val[MAXN + 5];
bool vis[MAXFAC + 5];
std::map<LL, int> buc; inline LL rint () {
LL x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline void sieve ( const int n ) {
for ( int i = 2; i <= n; ++ i ) {
if ( ! vis[i] ) pr[++ pn] = i;
for ( int j = 1; j <= pn && i * pr[j] <= n; ++ j ) {
vis[i * pr[j]] = true;
if ( ! ( i % pr[j] ) ) break;
}
}
} inline bool issqr ( const LL x ) {
LL t = pow ( x, 1.0 / 3 );
return t * t * t == x || ( t + 1 ) * ( t + 1 ) * ( t + 1 ) == x;
} signed main () {
n = rint (), sieve ( MAXFAC );
int ans = 0;
for ( int i = 1; i <= n; ++ i ) {
LL a = rint ();
if ( issqr ( a ) ) { ans = 1; continue; }
LL cur = 1, mtc = 1;
for ( int j = 1; j <= pn && pr[j] <= a; ++ j ) {
int cnt = 0;
for ( ; ! ( a % pr[j] ); a /= pr[j], ++ cnt );
if ( ! ( cnt %= 3 ) ) continue;
cur *= pr[j], mtc *= pr[j];
if ( cnt == 1 ) mtc *= pr[j];
else cur *= pr[j];
if ( mtc > MAXV ) mtc = 0;
}
LL sqt = sqrt ( a );
cur *= a;
if ( sqt * sqt == a || ( sqt + 1 ) * ( sqt + 1 ) == a ) mtc *= sqt;
else {
mtc *= a;
if ( mtc > MAXV ) mtc = 0;
mtc *= a;
}
if ( mtc > MAXV ) mtc = 0;
if ( ! buc.count ( cur ) ) siz[buc[cur] = i] = 1, rev[i] = mtc;
else ++ siz[buc[cur]];
val[i] = cur;
}
for ( int i = 1; i <= n; ++ i ) {
if ( ! siz[i] ) continue;
if ( ! buc.count ( rev[i] ) ) {
ans += siz[i], siz[i] = 0;
} else {
ans += std::max ( siz[i], siz[buc[rev[i]]] );
siz[i] = siz[buc[rev[i]]] = 0;
}
}
printf ( "%lld\n", ans );
return 0;
}

Solution -「AGC 003D」「AT 2004」Anticube的更多相关文章

  1. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇

    http://www.4gamer.net/games/216/G021678/20140714079/     连载第2回的本回,  Arc System Works开发的格斗游戏「GUILTY G ...

  4. Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory

    Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...

  5. SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法

    用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...

  6. 「Windows MFC 」「Edit Control」 控件

    「Windows MFC 」「Edit Control」 控件

  7. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  8. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  9. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

随机推荐

  1. [转]Vue之引用第三方JS插件

    1.绝对路径引入,全局使用. 在index.html文件中使用script标签引入插件. 该种方式就是上面演示ckplayer插件使用的方式. 备注: 这种方式的引用,会在开启ESLint时,报错,可 ...

  2. HDU 2099 整除的尾数(枚举 & 暴搜)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2099 思路分析:这道题的解法可以说是相当暴力了,但也有一些小坑,以下几点萌新们值得留意一下: 1. 仔 ...

  3. Sentry 企业级数据安全解决方案 - Relay PII 和数据清理

    本文档描述了一种我们希望最终对用户隐藏的配置格式.该页面仍然存在的唯一原因是当前 Relay 接受这种格式以替代常规数据清理设置. 以下文档探讨了 Relay 使用和执行的高级数据清理配置的语法和语义 ...

  4. Java高效开发-远程debug

    1.前言 "这怎么回事?在本地还好好,放到服务器就不行了.这该怎么排查,日志也看不出来啥呀",日常开发中经常会出现这种问题,这时候就可以尝试idea远程debug的模式试试 2.使 ...

  5. 详解__int128

    前言 如果遇到 long long 开不下的情况,可以使用 __int128 来博一把! note :__int128 仅 \(64\) 位 \(GCC G++\) 支持,不在 \(C++\) 标准中 ...

  6. Cesium入门7 - Adding Terrain - 添加地形

    Cesium入门7 - Adding Terrain - 添加地形 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com ...

  7. Python中的路径

    转义 windows路径使用的是\,linux路径使用的是/. 特别的,在windows系统中如果有这样的一个路径 D:\nxxx\txxx\x1,程序会报错.因为在路径中存在特殊符 \n(换行符)和 ...

  8. spring拦截机制中Filter(过滤器)、interceptor(拦截器)和Aspect(切面)的使用及区别

    Spring中的拦截机制,如果出现异常的话,异常的顺序是从里面到外面一步一步的进行处理,如果到了最外层都没有进行处理的话,就会由tomcat容器抛出异常. 1.过滤器:Filter :可以获得Http ...

  9. 什么是挂载?linux中挂载详解

    目录 一:什么是挂载,linux中挂载详解 一:什么是挂载,linux中挂载详解 1.linux中'一切皆文件',所有文件都放置在以根目录为树根的树形目录结构中.在linux看来,任何硬件设备也都是文 ...

  10. find -or 用法

    find /opt/IBM/WebSphere85/ -name *loggeter* - or -name *loggetter* | xargs rm -rf